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Abstract

Laser Detection and Ranging (LADAR) systems produce both a range image

and an intensity image by measuring the intensity of light reflected off a surface tar-

get. When the transmitted LADAR pulse strikes a sloped surface, the returned pulse

is expanded temporally. This characteristic of the reflected laser pulse enables the

possibility of estimating the gradient of a surface. This study estimates the gradi-

ent of the surface of an object from a modeled LADAR return pulse that includes

accurate probabilistic noise models. The range and surface gradient estimations are

incorporated into a novel interpolator that facilitates an effective three dimensional

(3D) reconstruction of an image given a range of operating conditions. The perfor-

mance of the novel interpolator is measured by comparing the reconstruction effort

against the performance of three common interpolation techniques: linear, spline, and

sinc.
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LADAR Range Image Interpolation

exploiting pulse width expansion

I. Introduction

This chapter describes the problem to be addressed by this research. Background

of the problem and goals for this research are given, as well as assumptions used to

limit the scope of the research. Previous related research is provided as well as the

organization for the rest of the thesis.

1.1 Background

Laser Detection and Ranging (LADAR) is an optical remote sensing technology

that uses lasers to sense the location of distant objects. LADAR is very similar to

radar and they operate on the same basic foundation. Radar and LADAR operate

on the premise of measuring the time of flight that it takes the transmitted energy to

travel to and reflect back to a receiver. The difference between the two technologies is

the wavelength of radiation that are used to sense targets. LADAR uses a wavelength

on the order of micro meters or smaller. The small wavelength characteristic permits

LADAR to consistently image targets with sub meter accuracy, an advantage over

radar. The ability to resolve images with sub meter accuracy lends this technology to

the applications for which LADAR is utilized. Some of these applications include en-

vironmental mapping, navigation and guidance, target recognition, and several more

military applications.

Military applications of LADAR consist of ranging, tracking, target recognition,

and mapping. These applications using LADAR enable the possibility of terrain

mapping, obstacle avoidance, and smart guidance of munitions [1]. The military is

currently developing a program that uses data generated by a LADAR camera on

a delivery vehicle in real time to identify high value targets and adjust course as

1



necessary. The delivery vehicle scans objects using LADAR while flying in a loitering

pattern. The 3D range images generated from the LADAR scans are compared against

stored images in a target recognition effort. Increasing the resolution of the returned

data would be desirable because it would increase the accuracy of the automatic target

recognition (ATR) process [2]. In addition, before final orders are confirmed, a human

in the decision process loop will confirm the results of the ATR.

One way to increase resolution of an image is to use an interpolator. Interpola-

tion is the process of filling in new data values between known data points [3]. There

are several interpolators available that are utilized to increase the resolution of a de-

tected image. Typical interpolation is conducted with the linear [4], spline [5], and

sinc [6] interpolators, which present an adequate ability to estimate the data points

between measured points. These interpolators are limited because they rely on only

one set of data information, the ranges to the target for each pixel. A Hermite inter-

polator would be prefered [7], but it relies on two sets of information, the ranges to the

target and the target’s surface gradients. To use a Hermite interpolator, additional

information about the target is required. Fortunately, this information can be found

in the LADAR return.

3D LADAR systems produce both a range image and an intensity image. When

the transmitted LADAR pulse strikes a sloped surface, the returned pulse is expanded

[8], [9]. This makes it possible to estimate the magnitude of the gradient of a surface,

pixel by pixel. In LADAR-based target recognition, low resolution is often more of

a limiting factor than noise, hence it is desirable to exploit all information available

to increase the resolution of the range image. Moreover, in some LADAR systems,

multiple pulse returns can be distinguished and processed. For the scope of this

research, only single pulse returns will be studied.

Previous work on LADAR pulse width expansion has dealt with either charac-

terizing the pulse width expansion and using it to increase the range accuracy in the

longitudinal dimension [8], or computing performance bounds on the effect the pulse

2



width expansion has on the longitudinal range resolution [9]. In contrast, this study

takes advantage of additional information contained in the pulse width expansion to

improve angular resolution of the range image in the two transverse dimensions (i.e.

the two dimensions perpendicular to the laser transmission, which is in the longitu-

dinal dimension) by using a Hermite interpolator.

There are two types of LADAR systems, direct-detection LADAR and coherent

LADAR [10]. Direct-detection LADAR transmits a single laser pulse that illuminates

the target and records the energy received from the reflected pulse. Each pixel in a

direct-detection LADAR records a small piece of the reflected light and the range is

estimated for the object in its field of view. When all of the pixels across a detector

are combined, a 3D image can be constructed. A coherent LADAR system sends

out a signal on a carrier frequency, generally using optical heterodyne detection. A

coherent detection system is often more complex than a direct-detection LADAR and

requires the use of diffraction-limited optics to achieve efficiency [11]. Because of these

limitations, direct-detection LADAR is used for this study.

1.2 Research Goals

The primary goal of this research is to prove that the pulse width expansion

in a LADAR return is measurable and can be effectively utilized to enhance the

image quality of an observed target. This is proven by estimating the gradient of

the surface of the object derived by the significance of the pulse width expansion

when compared to the original transmitted pulse width in the temporal domain.

The gradient characterization of the object, along with the range information, are

utilized by a Hermite interpolator to increase the angular resolution of an image more

accurately than existing interpolators.

1.3 Assumptions

For this research, the following assumptions were made:

3



• The pulse generated by the transmitter is Gaussian in both temporal and spatial

dimensions.

• The LADAR transmitter and detector are normal to the target plane.

• The target consists entirely of rough surfaces, and the reflection coefficient for

the entire target object space is the same.

• The LADAR optics induced aberrations on the reflected light are negligible.

• The atmospheric effects on the propagation of light are negligible due to the

assumed favorable conditions in which the LADAR is operated.

1.4 Related Research

Previous work on LADAR pulse width expansion has dealt with either char-

acterizing the pulse width expansion and using it to increase the range accuracy in

the longitudinal dimension [8], [12], computing performance bounds on the effect the

pulse width expansion has on the longitudinal range resolution [9], or deriving the

surface slope of a target based on range estimates [12]. In contrast, this study takes

advantage of the additional information contained in the pulse width expansion to

improve the angular resolution of the range image in the two transverse dimensions

(the two dimensions perpendicular to the laser transmission) through the use of a

Hermite interpolator.

1.5 Thesis Organization

Chapter II provides a description of the LADAR model, including the transmit-

ted pulse, the propagation of the pulse, and the noise effects. In addition, Chapter II

covers sampling, interpolation, and estimation theory. Chapter III explains the novel

aspects of the LADAR model and the Hermite interpolation algorithm, as well as the

methodology used in developing tests for this research. Chapter IV details the results

from the simulations described in Chapter III. Finally, Chapter V gives a summary of

4



the research and lists conclusions of the thesis as well as potential follow-on research

areas.
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II. Problem Background

This study relies heavily on an accurate representation of a LADAR system. There-

fore, considerable effort is spent explaining the components which sum together to

create the LADAR system model. This study also implements estimation algorithms

to quantify range and pulse width expansion significance as well as several signal pro-

cessing techniques to measure and process the data. The algorithms and techniques

chosen are described. This chapter provides a foundation of understanding, which is

needed to analyze and explain the test process and results from this study.

The explanation of the 3D direct detection LADARmodel utilized for simulation

will be simplified by subdividing the model into logical sections. Each section will

discuss the motivation and reason behind its function. Once the model is established,

the processing techniques relating to the focus of this research are expounded upon.

2.1 3D LADAR Model

The explanation of the LADAR model begins with the transmission of laser

light. The transmission of laser light includes the pulse model and the propagation of

the light through a medium. A few pulse models are shown, with one being ultimately

selected. The light propagation is explained by utilizing a general model. The next

logical step is the object interaction with the propagated laser pulse that originated

from the LADAR system. The object interaction with the pulse is very complicated,

therefore, assumptions will be presented and justified to simplify the model. The

object interaction is the capital section of the LADAR model because it explains the

exploited characteristic of the reflected laser pulse. The range equation is incorporated

into the model to determine the power received from the laser reflection off the target.

Next, the noise sources in the system are described and broken down into three

different models. The LADAR model description is completed by explaining the type

of detector used and its behavioral properties. A process flow model of the LADAR

simulation components is shown in Figure 2.1.
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Laser Pulse

Generation

Section 2.1.1

Light Propagation

Section 2.1.2

Laser Pulse

Target Interaction

Section 2.1.3,

Section 2.1.4, and

Section 2.1.5

Range Equation

Section 2.1.6

Noise Modeling

Section 2.1.7

Detection

Section 2.4

3D Data

Cube

System

Parameters

Figure 2.1: The components of the LADAR simulation.

Before further description of the LADAR model is elaborated, this paper defines

the use of the following words for clarity. The word ‘beam’ refers to the spatial and

3D profile of the light. The word ‘pulse’ is used to describe the laser profile in the

time domain.

2.1.1 Laser Pulse Generation. This section describes the characteristics of a

laser beam generator along with the light propagation properties. The laser generator

is described by the power output and the laser beam profile. The possible models for

light pulses are presented, with one model selected for the study. The propagation of

the light will be explained to conclude the section.

The light source in a LADAR system is a laser. Pulse lasers can be described

by their average power in Watts. They can be further reduced into energy per pulse

with the unit of measure in Joules. Laser sources can be described as a volumetric

energy distribution in three dimensions, which are deconstructed into temporal and

spatial domains.

A laser pulse description includes characteristics in multiple domains. Each

domain description is independent of each other. There are several models that are

used to describe a laser pulse. For the longitudinal or temporal domain, models

7



Figure 2.2: Shows three of the laser pulse temporal profiles that were considered
for this study.

include the rectangle, the negative parabolic, Gaussian, and hybrid pulse models. The

pulse temporal profiles of the rectangle, negative parabolic, and hybrid models are

shown in Figure 2.2. Due to its combination of accuracy and ease of use, the Gaussian

pulse was chosen by the author to describe the laser in the temporal domain. The

laser pulse temporal profile is calculated by [11]

Pt(t) =
Et

σw

√
2π

exp

[
−(t)2

2σ2
w

]
, (2.1)

where Pt(t) is the power of the laser pulse in units of watts, Et is the energy of

the pulse in Joules, and σw is the standard deviation of the Gaussian pulse. The

value of the standard deviation of the Gaussian pulse is defined by the full-width half-

maximum (FWHM), a metric used to describe the width or duration of a pulse. The

FWHM represents the width of the Gaussian pulse when the pulse is half of what the

maximum value of it is. The standard deviation of a Gaussian beam is derived by the
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Figure 2.3: Gaussian pulse model with identical parameters with the exception of
τg.

desired FWHM, shown by [9]

σw =
τg√
8ln(2)

, (2.2)

where τg represents the FWHM, typically specified on the order of nanoseconds. The

FWHM is important in defining a Gaussian beam because 63% of the energy in a

Gaussian laser pulse is within this boundary. The FWHM significance in the genera-

tion of the Gaussian pulse is shown by Figure 2.3. Increasing the size of the FWHM of

a Gaussian pulse decreases the amplitude. The inverse relationship of the amplitude

of the Gaussian pulse and its FWHM size is driven by the total power in each pulse,

in this instance 1 nW .

The first description of the laser pulse detailed the characteristics of the laser in

the temporal domain. For the transverse domain, lasers are classified by the transverse

electric and magnetic (TEM) mode. One of the most widely used modes for lasers

is the TEM00 mode, known for its Gaussian profile [14]. The Gaussian function is

utilized again to describe the energy distribution of the laser beam in the spatial or

9



transverse domain. For this mode, the two dimensional Gaussian beam exiting the

laser beam cavity is [11]

g(x, y) =
1

2πωo
2
exp

(
−x2

2πωo
2

)
exp

(
−y2

2πωo
2

)
, (2.3)

which describes the distribution of the field before it is implemented into a propagation

function. The field is normalized by multiplying it by the inverse of the square root

of the squared sum of the field. The field, g(x, y), is normalized so that the double

summation of the squared field is equal to one. The variable ωo is the beam waist,

which is described next.

Beam waist is a characteristic that is essential in describing a Gaussian beam.

The beam waist, represented by ωo in Equation (2.3), describes the size of the cross

section of the Gaussian beam at the aperture of the laser beam cavity. Knowledge of

the beam waist allows for the calculation of the beam width at the target by [9]

ω(z) = ωo

√
1 +

(
λz

πω2
o

)2

, (2.4)

where z represents the distance propagated and w(z) is the beam size at range z. The

equation explains the inverse relationship between the beam waist at the source and

the beam size at the target. The standard deviation of the Gaussian beam at the

target is found by dividing the beam size by the square root of two.

2.1.2 Light Propagation. Light propagation and its characteristics are de-

scribed with many models. A simplified model where light is represented with rays

can be explained with geometric optics. More realistic models describe light as waves.

These models include diffraction effects, which explain the behavior of light that can’t

be attributed to reflection or refraction. Two foundational models that explain light

diffraction are the Fresnel-Kirchhoff and the Rayleigh-Sommerfeld equations.
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The two models are based on the Helmholtz equation [15]

(
∇2 + k2

)
U (x, y, z) = 0, (2.5)

where U describes the amplitude and phase of the wave at each point in space and k =

2π/λ, is the optical wave number. The variable λ represents the wavelength of light.

The variable ∇2 is the Laplacian which describes the propagation of electromagnetic

waves in the form of paraboloidal waves [14]. The Helmholtz equation treats light

as a scalar phenomenon, neglecting the vector characteristics given by Maxwell’s

equations for electromagnetic fields [16]. The complex field U is calculated using

Green’s theorem [16]

U(x, y) =

∫ ∫
Ggreen(x− x′, y − y′)V (x′, y′)dx′dy′. (2.6)

The variables U and Ggreen represent two complex-valued functions of position and

V represents a driving function. The function Ggreen is known as Green’s function

and is dependent on the assumptions made about the problem. In light propagation,

Green’s function is used to model the path through which light traverses. In optics,

this is known as an optical system’s point spread function. The architects of the two

diffraction models made certain assumptions about the boundary conditions of the

aperture, which led to slightly different implementations of Green’s function. This

led to the two different diffraction models that are described in detail below. In this

study’s case, the driving function is the field distribution description of a Gaussian

beam.

The Fresnel-Kirchhoff diffraction equation is derived by assuming boundary con-

ditions that simplify the equation. The diffraction formula is appropriate as long as

two assumptions are met. The two assumptions state that the diffracting aperture

must be large compared with the wavelength of light and the diffracting fields must

not be observed close to the aperture, meaning that the observation distance is much

greater than the wavelength of light. For LADAR applications concerning this thesis,
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both conditions are easily satisfied. Despite making assumptions about the boundary

conditions of the complex fields, experiments have shown that the model accurately

predicts the behavior of electromagnetic fields as long as the two assumptions men-

tioned earlier are met [16].

Although the Fresnel-Kirchhoff diffraction model fairs well in describing diffract-

ing light, the Rayleigh-Sommerfeld diffraction model performs better in a wider range

of applications due to the lower number of assumptions made while considering bound-

ary conditions of the aperture [15]. The following Rayleigh-Sommerfeld diffraction

model is shown by [16]

U(x, y, z) =
−i

λ

∫
x′

∫
y′

U0 (x
′, y′, 0)

z

l2
e(ikl)dx′dy′, (2.7)

where k = 2π/λ, z is the propagation distance from the source to target, and the l

represents the total distance between various points in the source and field plane and

is calculated with l =
√

(x′ − x)2 + (y′ − y)2 + z2. The equation accurately models

the behavior of light that emerges from a small source and propagates to the far field.

The Rayleigh-Sommerfeld diffraction model is incorporated into the LADAR model

to propagate the light from the source to the target.

2.1.3 Laser Beam Target Interaction. As the previous sections in this chap-

ter have demonstrated, determining the amount of light that illuminates a target

down range is straightforward. However, seeking the light intensity reflected back

onto the LADAR detector is a problem that involves many factors. First, the po-

tential light interactions with the target are explained as well as the justifications for

the simplification process. Then, the calculation of the intensity of the reflected light

incident upon the detector is broken down in Section 2.1.6.

The process of understanding the reflection of light incident off a random object

involves many complicated parameters and statistical analysis to truly define the inter-

action. The laser radar target-signature phenomena includes polarization effects, an-
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gular characteristics, spatial characteristics, range characteristics, and Doppler char-

acteristics [17]. These phenomena are explained as well as the different approaches

taken to mathematically characterize their influence on the amount of light reflected

back at a LADAR detector.

The polarization of light describes the direction of motion of light relative to

its motion in the longitude direction. When light interacts with an object, the polar-

ization state of the light has the potential to change. The change in polarization is

dependent on several factors. First, the change in the polarization of light illuminat-

ing a target is highly dependent on the target shape [17]. Secondly, the polarization

of light is dependent on the coherency and specular reflection from the target. For

this study, the targets are assumed to have a rough surface relative to the wavelength

of light. When the surface is larger than the wavelength of light, diffuse reflections

occur [14]. Therefore, it can be assumed that the light reflected back from a target is

incoherent, eliminating the concern of polarization effects on the reflected light.

Doppler effects that occur on the incident light include frequency shifting and

Doppler spread. This phenomenon is caused by the movement of the target or sensor

during the sensing process [17]. For a pulsed laser, frequency shifting will have no

effect on the pulse width of the beam. Also, the sensor and target are assumed to be

stationary in the simulation; therefore, Doppler effects are not taken into account in

this study.

The angle resolved bidirectional reflection distribution function (BRDF) is a four

dimensional function that describes how light is reflected off surfaces. The BRDF ig-

nores Doppler and polarization effects and considers both the specular and diffuse

reflections of light. The BRDF is a ratio of the average reflected radiance to the

incident irradiance as a function of the propagation directions of incidence and reflec-

tion [17]. A generalized BRDF that only includes illumination and viewing angles is
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described by [8], [18],

BRDF = BRDFspec +BRDFdiff =
A

cos6 (θ)
exp

(
−tan2 (θ)

s2

)
+Bcosm (θ) , (2.8)

where A and B are constants that describe the ratio of specular and diffuse behavior,

θ is the incident angle relative to the normal, s is the surface slope, and m is a

parameter describing the diffuse surface.

The target interaction is further simplified by making an assumption about

the orientation of the LADAR relative to the target and the target’s surface. If

the LADAR system is normal relative to the target plane, then the cosine functions

become one. Also, if the target is considered rough, an assumption stated earlier

to mitigate polarization effects, then specular reflection can be ignored. Given the

assumptions listed above, the BRDF becomes a constant that only addresses diffuse

reflections. Though the BRDF was marginalized, additional characteristics of the

light target interaction are defined in Sections 2.1.4 and 2.1.5.

2.1.4 Pulse Width Expansion. Pulse width expansion or pulse broadening

describes the widening of a laser pulse in the temporal domain due to an extended

reflection off a target’s surface. In an ideal setting, a LADAR pulse strikes a tar-

get with a completely flat surface with normal incidence, and the light reflection is

modeled with a single impulse. In this case, the reflected pulse’s temporal profile

and transmitted pulse are identical. If the target has a sloped surface relative to the

pulse incident angle, multiple impulses are possible. In this case, the reflected pulse’s

temporal profile can be wider than the transmitted pulse, depending on the length of

the continuous return and the temporal sampling rate. The pulse width expansion

calculation is incorporated into [11]

Ptot(m,n, tk) =
Ns∑

kk=1

Pdet(m,n, tk − tkk)Tp(m,n, tkk), (2.9)
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where Pdet represents the power detected from the reflected light off of the target and

Tp represents the target profile. The variable Pdet is discussed in detail in Section 2.1.6

and the implementation of Tp is discussed in Chapter III. The variables m and n are

the indexed locations for each pixel in the detector array. The main takeaway from

Equation (2.9) is the pulse width expansion of the Gaussian pulse is modeled using

a convolution of the range equation and multiple delta functions calculated into the

target profile.

2.1.5 Target Dependent Characteristics. A further description of light’s

reflection behavior is needed to fully capture the light target interaction. External

light reflections off a target are summed up by the two categories of specular and

diffuse reflection. Specular reflection occurs when light is incident upon a smooth

surface and the light that is remitted by the surface atoms combines to form a single

well-defined beam. Diffuse reflection occurs when light is incident upon a rough

surface and the light that is reemitted by the surface atoms is scattered in all directions

independent of the light incident angle [14]. As mentioned in Section 2.1.3, specular

reflections are ignored in this study.

When diffuse reflections occur, the reflected radiation is spread out over an

angle that is larger than the incident angle. To an observer or sensor, the light

reflecting off an object is the same regardless of the angle of observance. This diffuse

reflection is commonly described as a Lambertian reflection. Due to the wide angle

of observance, the power of the light reflected off the target is proportionally reduced

by the Lambertian reflection shown by [11]

Pref (m,n, k) =
τaρtPt (m,n, k)

θR (dA)
, (2.10)

where θR is the solid angle over which radiation is dispersed, Pref is the intensity

of light reflected off the target in W/m2, τa is the atmospheric attenuation and is

described in Section 2.1.6, and ρt is the reflectivity coefficient. For a Lambertian

reflection, the angle over which the radiation is dispersed is π. The variable dA
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accounts for the observed area of each pixel at the distant plane where the target is

located. The variables m and n are indexed locations for the pixel FOVs at the target

plane. The reflectivity coefficient is explained further below.

The reflective nature of the target must be considered when determining the

light interaction with the target. The reflective characteristic of a surface describes the

ability of a material to reflect radiation [11]. For mirror like materials that typically

display specular reflection characteristics, the reflectivity coefficient value can range

from 1 to 0.25. Materials that display a diffuse reflection have reflectivity coefficient

values ranging from 0.25 to 0.02 [11]. The LADAR simulation developed in Chapter III

uses a reflectivity coefficient of 0.25, within the range attributed to diffuse reflections.

2.1.6 Range Equation. The range equation is used to calculate the power

of light incident upon the LADAR detector and is shown [11]

Pdet (m,n, k) =
D2

Rπ (dA)Pref (m,n, k) τoτa
4R2

, (2.11)

with Pdet that represents the power detected at the receiver as a function of position

and discrete moments in time. The range equation contains variables that are depen-

dent on the propagation path, target, and LADAR equipment. In this equation, m

and n are the spatial coordinates of pixels in an array and k marks the discrete time

samples. The variable Pref is the power of the laser pulse reflected off the target area,

which is calculated by Equation (2.10). The signal generated from the reflected pulse

is compared to a timing function to determine the range to the target surface for each

pixel. The rest of the variables in Equation (2.11) are defined below.

The propagation path variable related to Equations (2.10) and (2.11) is τa, the

atmospheric transmission loss. The variable accounts for the attenuation of the sig-

nal due to the absorption and scattering from atmospheric molecules, dust particles,

and aerosols. The attenuation factor is highly dependent on wavelength. Experi-

mental results comparing lasers with wavelengths of 2 and 10 microns have shown
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that smaller wavelengths are less susceptible to atmospheric attenuation than larger

wavelengths [19]. The LADAR simulation developed in Chapter III uses a laser with

a wavelength of 1.55 microns, therefore, the atmospheric transmission loss value is

set at one. A value of one for the atmospheric transmission loss value indicates that

there is no loss of light due to the atmosphere.

The target dependent variables in Equation (2.11) are ρt, θR, and possibly dA.

The first two variables are used to determine Pref and are described in detail in

Section 2.1.5. The surface area variable, represented by dA, is dependent on the

detector field of view, the laser beam size at the target, and the target size. The

variable dA is the smallest area presented when the three surface areas are compared.

Due to the design of the LADAR system detailed in Chapter III, the dA parameter

is dictated by the detector’s field of view. More specifically, since Equation (2.11) is

defined for each pixel in the detector array, dA represents the Field of View (FOV)

of each pixel.

The variables dependent on the LADAR equipment in Equation (2.11) are τo

and DR. The area of the receiver aperture constrains the amount of power received at

the LADAR detector. The area of the aperture is dictated by the variable DR, which

represents the diameter of the receiver lens, seen in Equation (2.11). The variable

τo represents the efficiency at which the detector captures light from the receiving

aperture. The transmission efficiency of the LADAR equipment is fairly high unless

the light incident upon the LADAR aperture is shared among a group of sensors [11].

Since this is not the case for this study, the value of τo is set to one.

2.1.7 Noise Modeling. There are multiple sources of noise that interfere

with detecting LADAR signal returns. Multiple noise sources originate from elec-

trical components of a detector, background light illuminating a target scene, and

speckle noise introduced by the laser reflection itself. The noise components and their

statistical distributions are explained in this section.
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Photon counting noise is involved with the signal because of the direct detect-

ing avalanche photo diode (APD) incorporated in most LADAR systems. The noise

source is best described by the following quote, “The number of photon-electrons

counted during time δt is a random variable whose mean is proportional to the ex-

pected number of photons” [11]. For single mode laser radiation, the photon counts

follow Poisson statistics [20]. The photon counting noise is incorporated into Equa-

tion (2.12).

Laser speckle is a characteristic of reflected light off rough-surfaces that produce

diffuse reflections [17]. The most significant characteristic of light that affects laser

speckle is its coherency. Coherency refers to the ability of a light beam to interfere

with a version of itself [20]. The coherency of light along with the expected value of

the photon count measurements permit the defining of the variance of speckle noise

σ2
speckle = E [Nsignal]

(
1 +

E [Nsignal]

M

)
. (2.12)

A value of one forM represents a very high coherence and for fully incoherent light the

value of M approaches infinity. To generate random noise, the variance of the speckle

noise applied to the negative binomial distribution is utilized to produce an accurate

representation of speckle and photon counting noise in a signal [11]. Background noise

is considered shot noise that is received by the detector that didn’t originate from the

laser transmitter [11]. Most background noise is attributed to the sun illuminating the

target. Since the random arrival of photons generated from background light that are

received by the detector can’t be used for ranging, they are considered noise. Photons

that are incident on an APD detector are generated using a Poisson distribution [21],

and the calculation for the mean of the Poisson distribution for background noise is

given by [11]

E [Nb] =
SIB∆λdAρtητaτoD

2
R∆tλ

4R2hc
+ E [Ndark] . (2.13)

The variables dA, τo, τa, and DR are covered in Section 2.1.6. The variable ρt is

the reflectivity coefficient and is described in Section 2.1.5. The variable R is the

18



range to target and the variable h is Planck’s constant. The variables λ and c refer

to the wavelength and speed of the light. The amount of noise generated is based

partially on ∆t, the sampling rate in time. The variable SIB is the intensity of the

background light at the target measured in units of W/m2 per µm of electromagnetic

bandwidth. The variable ∆λ is the electromagnetic bandwidth in µm of an optical

bandpass filter present in the LADAR system. The calculation also includes dark

current, represented by Ndark, which is defined as a small current that flows through

an APD when there are no photons incident upon the detector.

The thermal radiation is classified as electromagnetic energy (photons) that

is emitted by all objects [14]. The distribution of thermal radiation is considered

Gaussian in nature [22]. The variance of thermal noise is shown by [11]

Q2
n =

kbTC

q2e
, (2.14)

where Q2
n is the charge variance of thermal electrons. The other parameters influenc-

ing thermal noise are Boltzmann’s constant (kb), the temperature of the circuit (T ),

the capacitance of the circuit (C), and the charge of an electron (qe).

2.1.8 Detector Characteristics. A detector is a device that converts incident

photons into electrical signals. APDs are commonly used as detectors for direct-

detection LADAR systems. In addition to detecting incident photons, the APD can

also amplify the signal. The ability of the APD to amplify the signal is used to adjust

the signal to noise ratio (SNR) by [11]

SNRAPD =
GapdNsignal√

Q2
n +G2

apdσ
2
speckle +G2

apdNb

, (2.15)

where Gapd is the gain parameter of the APD. The gain limit setting of an APD is

dependent on the manufacturer, as some can provide gain ranging from one to orders

of 1000. But, the effectiveness of the gain setting in an APD is limited by speckle and

background noise.
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Figure 2.4: Three dimensional interpolation of one pixel. The pixel value represents
the height of an object in this study.

2.2 Interpolation

Interpolation is the process of inserting data points that are calculated with an

algorithm between observed data points. This study seeks to increase the resolution

of a LADAR produced image by utilizing interpolators to insert more points in the

point cloud. Effective interpolation is desired to reduce the data rate of the LADAR

equipment while not compromising on the quality of the images.

There are many techniques that are used to accomplish interpolation. In this

study, we use four different interpolators: sinc, spline, linear, and Hermite. The

first three interpolators use information from the range estimations. The Hermite

interpolator uses information from the range and pulse width expansion estimations.

The interpolators are first described in two dimensional (2D) space. Then, each

interpolator’s implementation in 3D is briefly discussed.

2.2.1 Linear Interpolation. Linear interpolation is a simple technique to

quickly insert additional points between the actual observed data points. This tech-
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nique is often used to fill in points in a table. The interpolator is described by [4]

y = y0 + (x− x0)
(y1 − y0)

(x1 − xo)
, (2.16)

where x0, y0, x1, and y1 are the observed values and y is the interpolated value at

inserted position x. Linear interpolation produces adequate results, but the ability to

approximate values is limited to the distance between the two observed points.

Bilinear interpolation is often used in computer image processing [23]. Bilinear

interpolation is executed similarly to linear interpolation, with the exception being the

number of observation points considered. Bilinear interpolation averages the values of

four observation points, and places that averaged value equidistant between the four

observation points, shown in Figure 2.4. This study implements bilinear interpolation

by incorporating a built in software function.

2.2.2 Sinc Interpolation. Sinc interpolation is used for signal reconstruction

to oversample an observed signal in an effort to smooth out the signal [6]. The sinc

interpolator is implemented in the same manner as a low pass filter on a signal. The

sinc interpolation function is defined as [6]

fsinc(x) =
∑
n

fsamp(nT )sinc
[π
T
(x− nT )

]
, (2.17)

where T is the sampling period, n is the over sampling rate of the sinc function, and

fsamp(nT ) is the sampled function. For interpolation, the variable x in Equation (2.17)

represents the observations of the original signal.

The implementation of the sinc interpolator on a 3D image requires a 2D sinc

filter. The 2D sinc filter is defined as

sinc2 (x, y) = sinc (x)sinc (y), (2.18)
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Figure 2.5: The 2D sinc filter. The sampling interval for the sinc filter is 1/4.

which is shown in Figure 2.5. The filter is convolved with an undersampled image for

2D sinc interpolation. This study spatially down samples images by a factor of two

and four for purpose of subsequent interpolator evaluation. The sampling period is

±2π and the sample interval is the inverse of the down sampling factor.

2.2.3 Spline Interpolation. Spline interpolation is often applied in the com-

puter graphics industry because of its simplicity and ability to model complex curves

and surfaces. Specifically, spline curves are used in image processing for magnification

and noise smoothing [24]. This study incorporates a cubic spline function detailed

by [5], [24]

fspline(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3, (2.19)

where xi ≤ x ≤ xi+1, and fspline(x) is the oversampled function that travels through

the observed data points. The coefficients of Equation (2.19) are dependent on the

observed samples of the data. The 2D spline interpolation technique is applied to the

down sampled images using built in functions in software.
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2.2.4 Hermite Interpolation. Like the interpolators described formerly, the

Hermite interpolator uses observed data points to approximate additional points in

between the measured set of points. In addition, the Hermite interpolator also consid-

ers the slope of the measured data points. Consider the function f(x) with derivative

f ′(x) , for which value and slope data are available on a grid of points: fi = f(xi)

and f ′
i = f ′(xi) for i = 1, ..., Nx. An approximating function is desired within the

point cloud of observation points. The function is defined piecewise using a cu-

bic ordered Hermite interpolator. The construction of the functions begins with

normalizing the subinterval between the two observation points xi and xi+1 with

u(x) = (x− xi)/(xi+1 − xi). Due to normalization, the coefficients of the cubic Her-

mite function are calculated on the interval [0, 1], assuming the tangent of the first

point is zero and for the second point is one. The local basis polynomials are [5]

α(u) = 1− 3(u)2 + 2(u)3, (2.20)

β(u) = 1u− 2u2 + 1u3, (2.21)

where α(u) is the basis polynomial for the range estimations and β(u) is the basis

polynomial for the surface slope estimations. The Hermite cubic interpolating func-

tion is defined as

pi (u) = fiα (u) + fi
′∆xiβ (u) + fi+1α (1− u)− f ′

i+1∆xiβ (1− u) , (2.22)

with ∆xi = xi+1 − xi = dx/du accounting for the change in variable and pi(u) is the

interpolating polynomial.

The advantage of including the gradient information into the Hermite inter-

polator is shown in Figure 2.6. The Hermite interpolator clearly follows the truth

data closer than the cubic spline interpolator. The root mean square error (RMSE)

calculation confirms what is seen visually in Figure 2.6. The RMSE calculation of

the spline interpolator is 0.22, compared to a RMSE value of 0.14 for the Hermite
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interpolator, shows a 36% improvement. In addition, if the linear interpolator was

shown, it would clearly miss the peaks of the truth data based on the observations

taken from the truth data.

For three dimensions, the bi-Hermite interpolation function with grid cell defined

as (xi ≤ x ≤ xi+1, yj ≤ y ≤ yj+1), is shown by

pi,j (u(x), v(y)) =
1∑

∆i=0

1∑
∆j=0

(fi+∆i,j+∆j)α∆i (u)α∆j (v)

+
1∑

∆i=0

1∑
∆j=0

∆xi

(
∂f

∂x

)
i+∆i,j+∆j

β∆i (u)α∆j (v)

+
1∑

∆i=0

1∑
∆j=0

∆yj

(
∂f

∂y

)
i+∆i,j+∆j

α∆i (u) β∆j (v) , (2.23)

with α0(u) = α(u), α1(u) = α(1−u), β0(u) = β(u), β1(u) = −β(1−u), and similarly

for v(y) = (y − yj)/(yj+1 − yj). The resulting interpolation is piecewise-defined over

the grid but is continuous in value and in both first partial derivatives everywhere

within [x1, xNx] × [y1, yNy]. The variable pi,j is the interpolating polynomial for the

3D Hermite algorithm.

2.3 Sampling

The digitization of the continuous signals represented in the LADAR system

introduces sampling constraints that need to be addressed. The 3D image dictates

the domains in which the sampling constraints occur, the time and spatial domains.

The sampling constraints are defined by the Nyquist sampling theorem, which states

that the sampling frequency has to be greater than twice the bandwidth of the signal

to avoid aliasing [3]. The Nyquist sampling rate is desired to set the limits of sampling

tolerance before the integrity of the images are lost. The sampling constraints of the

LADAR system model are investigated for both domains.
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Figure 2.6: The two dimensional interpolation comparison between the cubic spline
and cubic Hermite.

2.3.1 Time Domain Sampling Constraint. To gain insight into the temporal

sampling constraint dictated by a Gaussian pulse, it is analyzed in the frequency

domain. The Fourier transform of a Gaussian equation is shown [11]

∞∫
−∞

Et

σω

√
2π

exp

[
−t2

2σ2
ω

]
exp [−j2πft] dt = Et exp

 −f 2

2
(

1
4σ2

ωπ
2

)
 . (2.24)

The standard deviation of the generalized Gaussian function in the frequency domain

is shown

σf =
1

2σωπ
. (2.25)

Assuming that the cut off frequency of a Gaussian function is set at ±π standard

deviations away from the mean for minimal aliasing, it is defined as [11]

fc =
1

2πσw

· π → fc =
1

2σw

. (2.26)

Twice the cutoff frequency is the Nyquist sampling rate in the frequency domain. The

time domain sampling requirement is determined by the Nyquist sampling frequency
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shown

fn = 2fc =
1

σw

⇒ ∆t = σw, (2.27)

where fn is the sample rate in the frequency domain and ∆t is the sampling rate in

the time domain. Therefore, the minimum sampling rate in the time domain based

on the Nyquist criterion is the standard deviation of the Gaussian pulse implemented

in the time domain.

2.3.2 Spatial Domain Sampling Constraints. The time sampling constraints

are driven by the target properties and the Gaussian pulse’s profile in the time domain.

The temporal profile of the Gaussian pulse is investigated to find the requirements

for sampling in the temporal domain. The spatial sampling constraint is initially

established by investigating the sampling rate of a Gaussian beam. Once the Gaussian

beam’s sampling constraint in the target plane is established, the target’s involvement

in the system’s spatial sampling constraint is discussed.

A Gaussian beam’s minimum sample size in the receiver plane is determined

by [11]

∆GB <
λz

6σw

, (2.28)

where σw is the beam waist of the Gaussian pulse at the transmitter, λ is the wave-

length of the light, and z is the target distance. In this instance, the receiver plane

is classified as the target plane. As discussed in Section 2.3.1, the sampling limit

utilized in Equation (2.28) assumed the standard deviation is established as the mini-

mum sampling size for a Gaussian function. The sampling limit is determined in only

one dimension due to the symmetry of the Gaussian beam.

The Gaussian beam has set the sampling constraint limit in the target domain.

This sampling rate can be further limited by the target shapes. There are four dif-

ferent targets used in the simulation that are introduced in the Chapter III. The

Nyquist sampling rate in the spatial domain is investigated for the target shapes in
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Section 3.1.1 to find the overall spatial sampling limitation in the target plane for the

LADAR simulation.

2.4 Estimation Theory

This study requires estimations for the range of each pixel as well as the pulse

width expansion of each detected pulse. Several authors have investigated the merits

of different pulse detection methods. Peak, constant fraction (also referred to as 50%

leading edge), and matched filter (also called correlation detection) detection methods

are frequently compared against simulated incoherent and coherent LADAR signals

[13], [18], [25], [26]. The matched filter outperformed the other detection methods on

a consistent basis over a wide range of conditions. Therefore, the correlation detection

method is utilized to estimate the range and pulse width expansion of each pulse in

this study. The Pearson’s Product-moment coefficient, described by [27]

ρ =
1

N

N∑
n=1

(
dn − d̄

)
(rn − r̄)

σdσr

, (2.29)

is used to compare reference waveforms with the data received. Here, d̄ and r̄ rep-

resent the mean value for the data and reference waveforms. The variables σd and

σr represent the standard deviation of the data and reference waveforms. The corre-

lation coefficient, ρ, takes on the value between one and negative one indicating the

linear association between the two waveforms [27]. The estimation process favors the

correlation coefficient values that have the greatest value.

The range and pulse width expansion are accurately determined by compar-

ing reference waveforms with the received reflected LADAR beam. Reference wave-

forms for the range estimation are generated by using a window of ranges with Equa-

tion (2.1). These waveforms are compared with the received pulse and an estimated

range per pixel is established. The pulse width is therefore estimated by comparing

the data received against an array of reference waveforms generated using a 2D form
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of Equation (2.9). Once the pulse width expansion is estimated, the magnitude of the

slope of the surface of the target that is in the FOV of each pixel is calculated.

2.5 Chapter Summary

This chapter discussed the background material needed in several key subjects.

The development of the LADAR model required merging several areas of optical

science together to build an accurate model. The development began with the for-

mulation of the light pulse and then proceeded to a discussion about the reasoning

and selection of the propagation function for the light. The light and target inter-

action were covered in Sections 2.1.3 through 2.1.5 considering the involved physical

interactions and then the simplification of those interactions. The detection of the re-

flected pulse at the LADAR detector was scrutinized in Sections 2.1.6 and 2.1.8. Noise

sources that are involved with LADAR signals were discussed as well as their statis-

tical distributions in Section 2.1.7. The general estimation algorithms for LADAR

signals were covered in Section 2.4. The interpolation techniques that are applied

against the LADAR returns in Chapter III are explained in Section 2.2.

The next chapter, Chapter III, discusses the execution of the LADAR model

and the different parameters that are tested. A description of the estimation and

interpolation processes on the simulated LADAR data are also covered.
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III. Research Methodology

The research methodology begins with introducing and describing in detail the im-

plementation of the LADAR model. The LADAR model is constructed in parts to

simplify the explanation. In addition to the model, the execution of the estimation

and interpolation processes are described. Once the foundational processes are ex-

plained and defined, the testing procedures and reasoning are disclosed.

3.1 Parameters of LADAR Model

To construct a consistent model, the operating parameters need to be defined.

The conditions for the LADAR system are consistent with models covered during the

literature review process [11], [18]. The LADAR system constraints also reflect the

assumptions made concerning the development aspects of the LADAR model. The

parameters that remain consistent throughout the model and testing procedures are

shown in Table 3.1. There are other system settings that are needed to help define

the LADAR model which are varied through the testing process. These variables are

listed in Table 3.2.

The purpose for the simulations in this study is to compare the performance

of the bi-Hermite interpolator that takes advantage of the pulse width expansion

information against three other interpolators that only use range estimations. This

study also seeks to find the conditions in which the Hermite interpolator optimally

performs. The LADAR model conditions that are varied for testing purposes are the

range to target, FWHM of the Gaussian pulse, the sampling rate in time, and the

sampling rate in space. Some parameters are dependent on these variable conditions,

therefore, they are also variable. All variable settings in the LADAR system are

listed in Table 3.2. The logic behind the values listed in the table are explained

below. The range to target values and how the LADAR model adjusts due to the

dynamic propagation distance are explained in Section 3.5.5.
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Table 3.1: Constant system specifications of the LADAR.
Variable Value Units Description
λ 1.55× 10−6 Meters The wavelength of light lazed on target.
ωo 0.002 Meters Beam waist size of the Gaussian beam at

the source.
τa 1 Unitless The atmospheric transmission loss reflects

the attenuation of the light due to the at-
mosphere. For more details, refer to Sec-
tion 2.1.6.

τo 1 Unitless The optics transmission loss reflects the
attenuation of the light due to the optical
lens in the LADAR camera.

θr π Radians The diffuse reflection angle.
DR 0.1 Meters The lens diameter of the LADAR camera.

The variable is used to calculate the area
of the aperture.

E 0.05 Joules Power of the laser in Joules.
ρt 0.25 Unitless The reflectivity coefficient of the target.
ro 0.05 Meters The Fried’s parameter, sometimes called

the seeing parameter.
Detector Size 56 by 56 Pixels The detector array size of the LADAR.

The dimensions of the detector were arbi-
trarily chosen.

Pixel Size 5× 10−6 Meters The length of a square side of a single
pixel.

ν 0.075 Unitless The quantum efficiency of the detector.
C 1× 10−12 Farads The capacitance of the detector electron-

ics.
T 300 Kelvin The circuit temperature of the detector.
Ndark 1× 10−9 Amps The dark current of the detector circuit.
zrange ±10 Meters The established range gate dependent on

the range to target.
M 90 Degrees The coherence parameter of the light

which represents the degrees of freedom.
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Table 3.2: Variable system specifications of the LADAR model.
Variable Values Units Description
Z 10, 9, 8, 7, 6, 5, 4 Kilometers The distance from the LADAR to

the target.
δt 0.75, 1.5, 2.25, Nanoseconds The sampling in time is dependent

3, 3.75, 4.5, 5.25 on the standard deviation of the
Gaussian pulse. The sampling in
time is established by dividing the
standard deviation by the values
listed.

τg 4, 3, 2, 1 Nanoseconds The FWHM of the Gaussian pulse
generated by the laser cavity.

σw 1.70, 1.27, 0.85, 0.42 Nanoseconds The standard deviation of the
Gaussian pulse driven by the val-
ues of the variable FWHM.

q 2, 4 Unitless Spatial down sampling rate. A
value of two is classified as low res-
olution (LR). A value of four is
classified as super low resolution
(SLR).

The Gaussian pulse model in the time domain, shown by [11]

Pt(t) =
Et

σw

√
2π

exp

[
−(t)2

2σ2
w

]
, (3.1)

controls the variables of FWHM, the standard deviation of the Gaussian pulse, and

the sampling rate in the time domain. The standard deviation of a Gaussian pulse is

calculated using [9]

σw =
τg√
8ln(2)

, (3.2)

where τg represents the FWHM, whose values are listed in Table 3.2. The standard

deviation values that are calculated using Equation (3.2) are listed in Table 3.2. The

sampling rate in the temporal domain is derived from the standard deviation of the

Gaussian pulse, shown by

∆t =
σω

δt
, (3.3)
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as discussed previously in Section 2.3.1. The variable δt represents the arbitrarily

selected values that are based on the Nyquist sampling rate. The range of values for

δt, listed in Table 3.2, covers a sampling range from slightly under sampled to over

five times over sampled. Next, the logic behind the spatial down sampling rates is

explained.

3.1.1 Spatial Sampling Constraints. The spatial down samping rate is dic-

tated by two factors. First, we must know that the current sampling rate by the 56 by

56 detector array is sampling at an acceptable level at the target plane. Secondly, we

must have confidence that the down sampled images have enough data for reconstruc-

tion by interpolation. As mentioned in Section 2.3.2, the Nyquist sampling criterion

will provide the sampling size limit for the target plane. The two factors that are

investigated are the illuminating Gaussian beam and the target profiles.

The beam waist of the Gaussan beam is set at 2 mm. As mentioned in Sec-

tion 2.3.2, the Nyquist criterion sampling limit is found using [11]

∆GB <
λz

6σw

, (3.4)

for the Gaussian beam down range at the target. The standard deviation of the

Gaussian beam at the source is easily found by σw = ωo/
√
2, with a value calculated

at 1.41 mm [11]. Therefore, the sampling constraint for the Gaussian beam must not

be greater than 1.83 meters. With a FOV for each pixel calculated at 0.05 meters

down range at 10 km, the Gaussian beam happens to be incredibly oversampled.

Even considering a spatial down sampling factor of four, each sample occurs at every

0.2 meters, well within the Nyquist criterion sampling constraint.

Now that we know the Gaussian beam is sampled at an appropriate rate, the

spatial sampling rate of the target profiles are discussed. Before that can occur,

the target profiles need to be introduced. The author utilized four different target

profiles, as shown in Figure 3.1. The four profiles have different characteristics and
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Figure 3.1: Target profiles.

are intended to test the interpolator performance in different ways. The Nyquist

spatial sampling limit for the target profiles is approximated by investigating the

dome profile. The dome target profile was chosen because it contains both low and

high frequency characteristics when compared to the other target profiles.

The dome target profile Nyquist sampling constraint investigation begins with

approximating the dome to a Gaussian function. The Gaussian function behavior

from the mean ranging out to the first standard deviation compares favorably to the

dome shape. Therefore, a 3D Gaussian shape out to one standard deviation with

the same diameter size as the dome profile is used to investigate the spatial sampling

limit dictated by the targets. The diameter of the dome in the target plane covers

12 pixels, or 0.6 meters. Visually, the approximation occurs by placing a dome inside

a standard deviation of the mean of a Gaussian curve. The dome is centered on

the mean of the Gaussian curve and its circumference is approximately two standard

deviations across. Therefore, a Gaussian shape with a diameter of 1.8 meters, or three

times the width of two standard deviations, is desired for an approximation of the

dome. Using Equations (2.4) and (3.4), the standard deviation of a Gaussian beam

at the source that would expand to the appropriate size down range is 0.85 mm.
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Now that the standard deviation of the dome sized Gaussian function is known, the

sampling constraint of the function is now analyzed.

The Nyquist sampling constraint for a Gaussian function was found to be the

standard deviation of the Gaussian, as explained in Section 2.3.1. However, the

sampling constraint assumed a cutoff frequency was set at π standard deviations

away from the mean. We desire a new cutoff frequency for the Gaussian to be set

at one standard deviations away from the mean because of the approximation to the

dome shape. The new cutoff frequency is set by

fc =
1

2πσw

× 1 → fc =
1

2πσw

, (3.5)

therefore the Nyquist criterion sampling limit is

fn = 2fc =
1

πσw

⇒ ∆d = πσw, (3.6)

where ∆d represents the minimum spatial sampling rate for a Gaussian beam whose

cutoff frequency was established at one standard deviation away from the mean. Now

an adaptation to Equation (3.4) is made, shown by

∆DOME <
λz

2πσω

, (3.7)

which sets the Nyquist driven spatial sampling constraint for the dome, calculated

at 0.29 meters. Given that the maximum downsampling period occurs at every 0.2

meters with q = 4 shown in Table 3.2, we know that the sampling constraint dictated

by the illuminating Gaussian beam and the target profiles are met by the LADAR

system.

3.2 3D LADAR Model

3.2.1 Development of 3D Gaussian Beam at Target Plane. The LADAR

model begins with the laser beam exiting the laser cavity. The beam waist of the
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Figure 3.2: The Gaussian beam upon exiting the laser cavity of the LADAR.

Gaussian pulse exiting out of the laser cavity determines the size of the Gaussian

beam, given a constant propagation equation. A general 2D Gaussian equation is [11]

glc(x, y) =
1

2πσxσy

exp

[
− (x− x0)

2

2σ2
x

+
− (y − y0)

2

2σ2
y

]
(3.8)

where glc is the Gaussian beam exiting the laser cavity. The beam is demonstrated in

Figure 3.2. The Gaussian beam must now be propagated to the distant plane where

the target awaits.

To receive detectable amounts of light at the LADAR, the target needs to be

fully illuminated with the transmitted pulse. Ideally, depending on the size of the FOV

of the detector, the whole field should be illuminated. In this study’s case, illuminating

the entire FOV at the target is the goal. The Gaussian beam size needs to completely

illuminate the target down range to image the object with LADAR. A general beam

waist parameter for a LADAR system imaging objects at several thousand meters

was given at 0.009 meters. The two dimensional image of the Gaussian beam with

a beam waist of 0.009 meters at the laser cavity is shown in Figure 3.3(a). Through

test and evaluation, it was found that a Gaussian beam generated with a beam waist
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(a) Beam Waist = 0.009 m

(b) Beam Waist = 0.002 m

Figure 3.3: Two Gaussian beams with different beam waists. The field distributions
were created using Equation (3.9) with a propagation distance equal to
10 km. The two field distributions contain the same amount of energy
(1 Joule). The Gaussian beam with waist of 0.002 meters was selected
because it dispersed the energy over a greater area.

of 0.002 meters, shown in Figure 3.3(b), dispersed the power of the beam over a wider

area. It was found that the power of the Gaussian beam shown in Figure 3.3(a) was

concentrated in the center of the FOV, thus the edges of the image were lost in the

noise. The next step in the simulation is to propagate the Gaussian beam shown in

Figure 3.2 to the target.
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The Rayleigh-Sommerfeld diffraction model was chosen in Section 2.1.2 to prop-

agate the light from a source plane to the distant plane. The Rayleigh-Sommerfeld

propagation summation with t held constant is [11]

fprop(wp, sq) ≈
N∑

m=1

N∑
n=1

g(xm, yn)Z exp [j2π (R(xm, yn, wp, sq)/λ)]

jλR (xn, ym, wp, sq)
2 , (3.9)

where the variables wp and sq are the pixel locations for the field in the distant plane

and xm and yn are the pixel locations in the source plane. The distance between the

planes is Z, and the distance between the pixel in the source plane and the pixel in the

distant plane is R. The Gaussian beam field distribution in the spatial domain is now

established in the target plane. The Gaussian pulse profile in time is incorporated

with the Gaussian field distribution by [11]

Pt (x, y, tk) =
Et (x, y)√

2πσω

exp

[
− (tk − Z/c)2

2σ2
ω

]
, (3.10)

creating a 3D Gaussian profile at the target. The field distribution is incorporated

into the equation by Et(x, y) = E × fprop(w, s), which is the energy distribution of

the Gaussian beam at the target plane. The variable representing time, t, is iterated

over the entire range gate, given in Table 3.1. The power of the Gaussian beam is the

energy field divided by time. Now that the power of the Gaussian beam at the target

is described in 3D, the range equation and target profile are utilized to generate the

light reflected off the target as seen by the LADAR detector.

3.2.2 Beam Target Interaction. The target interaction is calculated by

creating a target profile and convolving it by the range equation. The range equation

is [11]

Pdet(m,n, k) =
τoτ

2
aD

2
RPt(m,n, k)

R2θR
, (3.11)
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(a) Gaussian pulse incident upon
target normal to the LADAR.

(b) Gaussian pulse incident upon
target with sloped surface.

Figure 3.4: Comparison of Gaussian pulse interaction with two different target
slopes.

where Pt is the power of the transmitted Gaussian pulse at the target. The variables

ρt and dA that were in the range equation described by Equation (2.11) were moved

to the target profile equation because the parameters are target dependent.

The target profile is calculated based on the characteristics of the target. Each

pixel of the image has a set of unique characteristics. For this study, the reflectivity

coefficient, explained in detail is Section 2.1.5, is constant over the FOV of the detector

array. Therefore, the unique characteristics of each pixel only concern the area and

the slope of the target. The area of each pixel is constant because all the pixels in

the array are the same size. However, the target profile equation can include multiple

returns, depending on the slope of the target. The target profile equation is

Tp(m,n, k) =
dA

nreturns

ρtδ (m,n, k) , (3.12)

where nreturns is the total amount of impulse returns based on how long it takes for

the Gaussian pulse to propagate through the object’s surface. The locations for the

impulses, depicted by k, are centered on the location where the target profile surface

occurs in the range gate. Each additional impulse is placed in alternating locations of
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its nearest neighbor. Locating the impulses in this way produces a widened Gaussian

pulse that peaks at the range location of the target surface. The variable δ is the

Dirac delta function, with the number of impulses determined by

nreturns =

[
x tan (θ(m,n))/c

∆t

]
, (3.13)

where x is the width of the pixel in the distant plane, ∆t is the sampling period in

time, and θ is the angle of the slope of the pixelated target. The numerator represents

the length of an unknown side of the triangle in Figure 3.4(b) divided by the speed

of light.

The calculation of the power of the laser reflection off the target incident on the

LADAR detector is [11]

Ptot(m,n, tk) =
Ns∑

kk=1

Pdet (m,n, tk − tkk)Tp (m,n, tkk), (3.14)

which is the convolution of the target profile and the range equation. Next, noise

is added into the signal to reflect the types of interference that a LADAR system

experiences.

3.2.3 Additive Noise. There are three functions that incorporate four dif-

ferent noise sources that are added into the signal. The three functions have different

distributions, therefore, they are generated independently and summed into the signal

produced by Equation (3.14). Before the noise is added in with incident light, the

signal must be converted from watts to photons. The relationship used to convert

between watts and photons is [11]

NP = Ptot
(∆t) ηλ

hc
, (3.15)
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Figure 3.5: Noise functions.

with h representing Plank’s constant, η is the efficiency of the detector, and ∆t is the

sampling period in the time domain. Once all the noise sources are added into the

signal, it is converted back to watts for estimation.

Background noise is generated with Poisson distribution and an expected value

of [11]

E [Nb] =
SIB∆λABρtητaτoD

2
R∆t

4R2hv
+ E [Ndark] . (3.16)

Background noise adds the least amount of noise to the system, but does limit the

effectiveness of the APD in its effort to increase the SNR.

The photon counting and speckle noise is generated using a negative binomial

distribution with variance [11]

σ2
speckle = E [Np]

(
1 +

E [Np]

M

)
, (3.17)

where M is the degrees of freedom of the light and σ2
speckle is the variance of the

measured photon counts driven by the noise. AnM value of 90, used in the simulation,

indicates the laser light is incoherent.
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Figure 3.6: Noise comparison.

Thermal noise that is introduced into the LADAR system by the electrical

components of the APD detector is described by Gaussian distribution with variance

calculated as [11]

Q2
n =

kbTC

q2e
. (3.18)

Thermal noise is the most significant noise source for the signal. Fortunately, thermal

noise is mitigated by using a gain characteristic of the APD detector.

The total signal is calculated by combining the noise and the true signal as

Ntotal = Nbackground +Nthermal +Nspeckle, (3.19)

where the variable Nspeckle is the speckle noise layered on top of the signal that was

incident on the LADAR detector. The SNR of the data is controlled to a limited

extent by [11]

SNRAPD =
GapdNmax√

Q2
n +G2

apdσ
2
speckle +G2

apdNb

. (3.20)

Because of the spatial Gaussian distribution of the energy contained in the reflected

signal, a significant portion of the light reflected back towards the detector has a
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very small amplitude. Therefore, an accurate SNR cannot be calculated because

taking the average return across the entire range gate would produce a value not

representative of the true signal. A representative value of the data is calculated by

taking the maximum value of the signal for each pixel and averaging these values over

the detector array to get Nmax. To isolate the speckle noise from the variable Nspeckle,

the true signal is stripped off, represented by Ns = Nspeckle −N . Then the square of

the standard deviation of Ns gives the variance of the speckle noise, which is inserted

into Equation (3.20).

3.2.4 Exclusion of Atmospheric and Optical Aberrations. The modeling of

the atmospheric and optical aberrations were excluded from the LADARmodel for two

reasons. First, adding aberrations into the LADAR system complicates the estimation

and simulation process. It is easier to understand the performance of the interpolators

without adding additional factors into an already complicated process. Secondly, the

exclusion of the optical aberrations is justified by describing the atmospheric coherence

diameter (ro). The variable describes the image degrading effects of the atmosphere

on the image. The turbulence effects on the image are minimal when the relationship

described Dr > ro is true [11], [20]. In this study’s case, the values are listed in

Table 3.1, justifying the exclusion of the optical aberrations in the LADAR model.

The value for ro of five centimeters is within the acceptable range and describes a

relatively good seeing day through the atmosphere [20].

3.3 Estimation

Estimations on the simulated data of the LADAR were conducted using matched

filters. The matched filter is implemented in a two step process to range the target

and to determine the slope.

First, the range of the target was found using [27]

ρ =
1

N

N∑
n=1

(
dn − d̄

)
(rn − r̄)

σdσr

, (3.21)
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comparing the data, dn, with the generated reference waveforms, rn. The mean value

of the data and reference waveform is represented by d̄ and r̄. The reference waveforms

are generated using a two dimensional range equation driven by the Gaussian pulse

model [11]

Pt(t) =
Et

σw

√
2π

exp

[
−(t)2

2σ2
w

]
, (3.22)

detailed in Section 2.1.1. The power transmitted to the target is inserted into the 2D

range equation [11]

Pdet (t) =
τoτ

2
aD

2
Rρt (dA)Pt(t)

R2θR(θtR)2
. (3.23)

The difference between the 3D range equation shown in Equation (3.11) and Equa-

tion (3.23) are the extra three terms of θt, R, and Pt. The two new terms of θt

and R refers to the angular divergence of the laser beam. The angular divergence is

compensated in the 3D equation by the Rayleigh-Sommerfeld propagation equation.

The reference waveform Pt is identical to the 3D Pt (used in Equation 3.11) in pulse

width, but is only roughly similar in amplitude. Due to the 3D spatial dispersion of

the energy in the beam, the amplitude of the Gaussian pulse for each pixel in the

detector array varies greatly. However, the shape of the pulse is the most important

characteristic of the waveform because the estimation algorithm chosen relies on the

correlation coefficient [27].

Once the range of the object is ascertained, the pulse width of the reflected

pulse is estimated. The pulse width estimation leads to the calculation of the slope of

the target. The reference waveforms for the pulse estimations are generated using [11]

Ptot (tk) =
N∑

kk=1

Pdet (tk − tkk)Tp (tkk), (3.24)

with Tp representing the target profile that was developed in the same manner as

detailed in Section 3.2.2. To estimate the pulse width, a reference target profile is

generated based on the angles listed in Table 3.3. With the estimated range kept

the same, 14 different reference waveforms are generated and compared with the
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data received using Equation (3.21). The slope of the target is calculated using the

trigonometric relationship of a right triangle shown in Figure 3.4(b) with a known

base (derived from the pixel size) and angle estimation.

Table 3.3: The search space angles of the target’s slope.
Degrees

Reference Angles 0, 30, 45, 60, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88

3.3.1 Angle Estimation Reasoning. The calculation of the pulse width ex-

pansion is dependent on the sampling rate in the time domain, the pixel FOV at

the target, and the slope of the target. The amount of target profile impulse returns

depend on the sampling in time and the length of the surface slope in the longitudinal

domain. When the surface slope contains small angles relative to normal, the change

in the length of the longitudinal distance is small. Therefore, there is very little pulse

width expansion when the surface angles are between 0 and 60 degrees. That leads to

a sparse selection of angles to estimate for between 0 and 70 degrees. The reference

angle selection rate increases from 70 to 90 degrees because of the increase in change

with respect to the distance of the surface slope in the longitudinal domain.

In the event that different angles other than zero have an identical target profile

due to a long sampling period in the time domain, the algorithm judging the correla-

tion coefficient between the reference waveform and data waveform gives preference

to the previous selection in the event of a tie. Therefore, if there is no pulse width

expansion, the estimator will select a surface with zero degrees, even though it is

possible to have a surface with a significant angle and reflect a Gaussian pulse with

no detectable pulse width expansion.

3.4 Interpolation

The interpolation phase of the simulation involves taking the spatially down-

sampled data from the estimation conducted in the simulation and interpolating the

data to the original resolution of the image. This study uses two downsampling factors
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Figure 3.7: The 28 by 28 grid of sampled points is interpolated by a factor of two
for comparison to the original image with a resolution of 56 by 56. The
right side of the image shows four estimated data points in color and
the interpolated points are in white.

which are listed in Table 3.1. As mentioned in Section 2.2, four different interpolators

are used for comparison: a linear, cubic spline, sinc, and Hermite. The interpolators

are used to increase the resolution of the sampled data back to the original size.

The bilinear and cubic spline interpolations in 3D are carried out with built-in

software functions. The interpolation factor is determined by the amount of spatial

down sampling of the signal conducted on the front end of the simulation. The 3D

sinc interpolator is implemented using convolution. The 3D sinc filter is developed

using

sinc2 (x, y) = sinc (x)sinc (y), (3.25)

where the sampling period is approximately ±2π and the sampling interval is the

inverse of the down sampling factor (1/q).
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The bi-Hermite interpolator is implemented using

pi,j (u(x), v(y)) =
1∑

∆i=0

1∑
∆j=0

(fi+∆i,j+∆j)α∆i (u)α∆j (v)

+
1∑

∆i=0

1∑
∆j=0

∆xi

(
∂f

∂x

)
i+∆i,j+∆j

β∆i (u)α∆j (v)

+
1∑

∆i=0

1∑
∆j=0

∆yj

(
∂f

∂y

)
i+∆i,j+∆j

α∆i (u) β∆j (v) , (3.26)

with the range estimations incorporated in all three double summations, the horizontal

slope estimations incorporated in the second double summation, and the vertical slope

estimations incorporated in the last double summation.

The implementation of the bi-Hermite interpolator is best explained in 2D with

f and ggrad functions of x only. The estimation of the magnitude of a slope is possible,

but not its direction or sign. The direction or sign is inferred by fitting a quadratic

qi(x) to each sample fi and its two immediate neighbors, fi±1. The sign of the true

derivative is estimated as the sign of the derivative of the quadratic, therefore the

derivative is estimated as

Ĝgrad (xi) =
q′i (xi)

|q′i (xi)|
ggrad (xi) , (3.27)

where |.| denotes the absolute value and we make the exception of 0/0 = 0.

Similar to the 2D case, the 3D problem with adding direction to the slope is now

introduced. The gradient of each sample in a 3D case is constructed by combining

the known gradient magnitude with the orientation of the gradient of a pair of 2D

quadratics qi,j(x), pi,j(y) fitted to the sample in question and its four immediate
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neighbors, fi±1,j, fi,j±1,

Ĝgrad (xi, yj) =

[
∂qi,j
∂x

,
∂pi,j
∂y

]T∥∥∥∥[∂qi,j
∂x

,
∂pi,j
∂y

]T∥∥∥∥
∣∣∣∣∣∣∣∣
(xi,yj)

ggrad (xi, yj) , (3.28)

where ∥ .∥ denotes the Euclidean norm of a vector. For a uniformly spaced grid,

Equation (3.28) reduces to

Ĝgrad (xi, yj) =
[(fi+1,j − fi−1,j) , (fi,j+1 − fi,j−1)]

T√
(fi+1,j − fi−1,j)

2 + (fi,j+1 − fi,j−1)
2
ggrad (xi, yj) , (3.29)

with ggrad (xi, yj) representing the estimation of the magnitude of the gradient in

Equations (3.27), (3.28), and (3.29).

3.5 Testing Effort

The purpose of the simulation is to test each interpolator’s ability to accurately

increase the resolution of sampled LADAR returns. The 3D LADAR simulation was

run varying the following variables: range to target, sampling in time, sampling in

space, and using nine different targets. In addition, each test was run 10 times due

to the randomness of the noise functions. Also, the SNR of the signal was limited to

three or greater, ensuring a strong estimation of range. The SNR is controlled using

the APD mentioned in Section 2.1.8.

3.5.1 Target Creation and Down Sampling Implementation. Nine different

targets were created using a combination of the four different target profiles discussed

in Section 3.1.1. Each target profile shown in Figure 3.1 makes up four of the targets.

Each of the next four targets contain a target profile shown in Figure 3.1 placed in

nine different offset locations in the target plane. The ninth target consists of a few of

each target profile placed throughout the target plane. The placement of the multiple

target profiles had to be offset due to the down sampling process described below.
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Two different spatial down sampling strategies were considered for the simula-

tion. The first technique involved averaging the pixels together. The second technique

down sampled the data by incrementing through the detector array and selecting ev-

ery second or fourth pixel, depending on the down sampling rate. The former method

is considered more realistic because the down sampling process includes all of the

received reflected light. But the execution of this down sampling method lead to the

skewing of objects to the left side of the image. Therefore, the latter down sampling

technique was chosen.

The selection of the down sampling technique lead to the decision to offset the

placement of the target profiles. If the target profiles were not offset, then certain in-

terpolators could get an unintended advantage. For instance, consider the cone target

profile, consistently placed throughout the target plane. The down sampling could

possibly occur at the peaks of every cone, giving the linear and Hermite interpolators

an unfair advantage. Therefore, the objects were placed slightly offset to counter this

potential bias.

3.5.2 Root Mean Square Error. The images generated by the four interpo-

lators are compared to the original control images described above in various ways.

First, the RMSE is calculated by [24]

RMSE
(
θ̂
)
=

√√√√ 1

MN

M∑
m=1

N∑
n=1

|u (m,n)− u′ (m,n)|2, (3.30)

where u′ represents the control image and u represents the interpolated image. The

RMSE calculations of the images provide a measurement of how much each value of

a pixel, on average, is off from the value of each pixel for the control image. In this

study’s case, the value of each pixel is the height of the surface for the object.

3.5.3 T-test. Besides the RMSE calculations, a T-test is utilized to analyze

the performance of the interpolators. T-tests are used to look for differences in the
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mean of two groups [28]. In this study’s case, the T-test was implemented to determine

whether a control image is significantly different from the interpolated image. There

are two assumptions that have to be made about the data to apply the T-test. The

data has to be independent and have a normal distribution. To utilize the T-test,

certain parameters need to be established first. The criterion used for rejecting a null

hypothesis, α, is defined as the probability of a Type I error or false positive. The

variable α is often called the significance level or sensitivity and is represented by [28]

α = P (Type I error) = P (Reject H0|H0 is true) . (3.31)

The choice of value for the significance level is arbitrary and is usually selected as

0.05 [28]. For this study, the α value is selected as 0.10. The t-test value is found

by [28]

T =
x̄T − x̄C√
σ2
T

nT
+

σ2
C

nC

, (3.32)

with n representing the total number of pixels, σ2 is the variance, and x̄ is the mean

of the pixels for that image. Once the value is found, it is used in the calculation

of the p value, which is the probability of obtaining a test statistic (T ) at least as

extreme as the one that was actually observed, assuming the null hypothesis is true

(H0). The rejection of the null hypothesis occurs when the p-value is less than the

significance level. The p-value is calculated by [28]

pvalue = P (|T | ≥ T0) , (3.33)

were the value of T is the T-test calculation from Equation (3.32) and T0 represents

the same calculation generated from a table corresponding to the chosen value of α.

Next, the specific application of the T-test to this study is explained.

The T-test will allow for certain conclusions to be made about the comparison

of two images. But, before that is discussed, qualifying statements about the data

must be made to validate the utilization of the T-test. First, the data that consists of
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the two compared images are independent because each pixel is calculated separately.

Secondly, the distribution of the data is normal due to the number of pixels considered.

Each image consists of an array of pixels with size equal to 56 by 56 pixels, summing

to a total of 3, 136 pixels. The considerable number of pixels provided justification

for using the central limit theorem to prove normal distribution.

A T-test is conducted based on the following

Ho : µ(control)− µ(interpolated) = 0, (3.34)

with an alpha value equal to 0.1. If the T-test value produces a rejection of the null

hypothesis, then it is concluded that the image generated by the interpolator contains

a mean pixel value that is different from the mean pixel value for the control image.

This result is statistically significant. Therefore, it is interpreted that an interpolator

that produces more rejections of the null performed worse than an interpolator that

produced less rejections of the null hypothesis.

3.5.4 Survey. A survey is also used to compare the images generated by the

interpolator with the control image using human interpretation. Utilizing a survey

provides another way to interpret the performance of the interpolators. This study

wants to mirror the way humans prefer certain images over others. The implementa-

tion of the survey is described next.

The construction of the survey began with planning the survey itself. The setup

began with choosing a set of images that were generated by the interpolators during

one of the multitude of simulations. Then the control image for that simulation was

selected for comparison. The four interpolated images are randomly placed on a single

page next to the following identifiable letters: A, B, C, and D. Then, the participant

is asked to judge the quality of the images compared to the control image. Each

interpolated image is judged on a scale of one through four, with one being the best

image and four being the worst. The survey was conducted using 19 participants
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and eight different sets of images. The same question was asked for all eight sets of

images.

The purpose of the survey is to get a human perspective on the performance of

the interpolators. To achieve this goal, eight total sets of interpolated images were

chosen for the survey. The first four sets were selected based on the requirement

that they have the same simulation conditions, with the one exception being the

target. The last four sets were chosen based on their RMSE results. Among the last

four sets, two sets were chosen with favorable and unfavorable results for the Hermite

interpolator, and two sets were chosen based on relatively even RMSE calculations for

all four interpolators. The intention behind the selection methology was to establish

a good sample from the thousands of interpolated images produced from the tests.

3.5.5 LADAR Model Adjustments. The testing process of changing the

range to the target requires addressing the LADAR model. Due to the physical

nature of light, decreasing the target range from 10, 000 to 4, 000 meters decreases

the FOV of the pixels. In the initial testing phase, the size of the pixel at the detector

was determined to be 50 µm. Based on the following relationships described below,

the FOV area for a single pixel is calculated by [11]

γ =
∆

fl
, (3.35)

AFOV = (γ · Z)2 , (3.36)

with ∆ representing the pixel size of the detector, fl is the focal length of the LADAR,

and Z is the range to target. Given that the detector size is a fixed 56 by 56 array, the

FOV downrange of the detector is 2.8 meters for a target range of 10 km. Therefore,

the targets for the LADAR simulation are constructed with the knowledge that the

area of the FOV for the detector is a certain size. But, since the range to target is

a dynamic variable in the LADAR simulation, other LADAR conditions have to be

negotiated.
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Table 3.4: Variable parameters of LADAR simulation dictated by the range to tar-
get.

Range (m) Pixel Size (µm) Target Size (m) Beam Size (m)
10, 000 50 2.80 10.47
9, 000 45 2.52 9.42
8, 000 40 2.24 8.37
7, 000 35 1.96 7.33
6, 000 30 1.68 6.28
5, 000 25 1.40 5.23
4, 000 20 1.12 4.19

Due to sampling constraints throughout the simulation, the relationship that

could be exploited with the least amount of changes made to the LADAR simulation

conditions was the pixel size at the detector. Adjusting the pixel size depending on

the range requires changing the target size down range. But, this enables the sampling

to remain consistent. Also, the beam waist of the LADAR pulse did not have to be

adjusted because the relationship that dictates the size of the FOV for each pixel is

consistent with the relationship described in Equation (2.4). The pixel, target, and

beam size values are calculated for each different range to target and are listed in

Table 3.4. The beam size is the diameter of the Gaussian beam at the target.

3.6 Chapter Summary

This chapter covered the implementation of the LADAR model, the simulation

procedures, and the types of tests that were run on the data. The LADAR model was

constructed piecemeal starting with the laser pulse, incorporating light propagation

with target interaction, adding noise, and including the APD detector characteristics.

The model was finished by explaining the estimation processes of the system. A brief

explanation was provided on how the three basic interpolators were implemented.

Also, a more in depth description of the bi-Hermite interpolator was provided to

explain the unique application of the interpolator. Finally, the testing account was

given to show the different ways of evaluating the performance of the interpolators.

Next, Chapter IV displays the results of the performance of the interpolators.
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IV. Results and Analysis

This chapter details results from the simulations described in Chapter III. First, the

survey results are displayed in a frequency table and compared against a corresponding

RMSE table. Then, the T-test results are shown in Section 4.2. The RMSE results

derived from the multiple simulations ran across multiple conditions mentioned in

Section 3.5 are discussed in Section 4.3. An analysis of the Hermite algorithm is

conducted in Sections 4.4 and 4.6. The estimation efforts and their performance are

covered in Section 4.5.

Before going further, a reference table is shown to reference the image number

with the actual target shape.

Table 4.1: Target reference table.
Target Number Target Description

Target 1 Single Dome
Target 2 Multiple Domes
Target 3 Single Cone
Target 4 Multiple Cones
Target 5 Single Square
Target 6 Multiple Squares
Target 7 Single Trapezoid
Target 8 Multiple Trapezoids
Target 9 Multiple Shapes

4.1 Survey Results

The survey results are reported in Table 4.2. All 19 participant surveys were

decoded, summed, and then divided to get the percentages shown. Each row and

column sums to one with possible error introduced from rounding to the nearest

integer.

The images created by the Hermite interpolator are clearly preferred by most

of the participants. The Hermite interpolated images were classified as among the

best two images in the set of four 83% of the time. This result is consistent with the

RMSE calculations of the same eight sets of images shown in Table 4.3. The Hermite
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Table 4.2: Human subject survey results.
Interpolator Best (1) Second Best (2) Second Worst (3) Worst (4)
Hermite 41% 42% 11% 6%
Linear 34% 29% 26% 11%
Sinc 20% 21% 45% 13%
Spline 7% 7% 16% 71%

Table 4.3: RMSE results. Percentages are rounded to nearest integer.
Interpolator Best (1) Second Best (2) Second Worst (3) Worst (4)
Hermite 38% 50% 13% 0%
Linear 25% 25% 50% 0%
Sinc 38% 0% 38% 25%
Spline 0% 25% 0% 75%

interpolated images produced the lowest two RMSE results when compared against

their peers 88% of the time. The percentages reported also suggest that the Hermite

interpolator is resilient despite the varied shapes, with only 6% of the Hermite images

classified as the worst in the set of four by the survey participants.

The linear interpolator results reported by Tables 4.2 and 4.3 are similar to the

Hermite results. The sinc interpolator performed the best in comparison with the

other interpolators a significant percentage of the time, reported by the frequency

tables with 20% and 38%. The spline interpolator performed the worst among the

four interpolators when considering the results from the two frequency tables.

As reported by Section 3.5.4, eight sets of images were selected for the survey.

Out of the eight sets, four were selected with identical conditions set during the

simulation. The control images used for comparison against the sets of interpolated

images are shown in Figure 4.1. The RMSE values for the sets of four interpolated

images are plotted against the varied sample rate and are shown in Figure 4.3 through

Figure 4.6. The RMSE values reported in the figures are calculated by averaging all

RMSE values for every test that occurs at that particular sample rate. The dashed

lines seen in the figures represent the RMSE of an interpolated image with perfect

estimations of the range and pulse width. The dashed lines represent the ceiling for
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Figure 4.1: Control images related to survey and RMSE plots in Figures 4.3
through 4.6. Notice the offset placement of the shapes, mentioned in
Section 3.5.1.

Figure 4.2: One set of interpolated images included in the survey. The figure
shows each interpolator’s attempt to reconstruct Target 9, shown in
Figure 4.1, using SLR data estimates. The survey images were taken
from the first sample rate in time and the RMSE values are shown in
Figure 4.6.
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Figure 4.3: Target 4 (Multi-Cone) results. The dashed lines represent the RMSE of
an ideal estimation and the solid lines represent the actual estimations.

the RMSE based performance of the interpolators. A summary of the RMSE plots

shown in Figure 4.3 through Figure 4.6 is explained below.

The Hermite interpolator RMSE values are consistently among the lowest in

comparison against the other interpolators. The sinc interpolator does well with cone

and trapezoidal objects, rating as the best interpolator for these images. The spline

interpolator is clearly the worst of the four interpolators based on the RMSE plots.

The linear interpolator performance is right around the middle in comparison against

the other interpolators. An example of one set of interpolated images used in the

survey is shown in Figure 4.2. The averaged RMSE results for this set of images

shown is reported by the first time sampling rate of the plot shown in Figure 4.6.

4.1.1 Resiliency of Interpolators. The average RMSE difference between

the interpolated images using actual estimations of range and pulse width and in-

terpolated images using perfect estimations of range and pulse width are shown in

Table 4.4. The linear, spline, and sinc interpolators all use the same range estima-

tions. The Hermite interpolator uses the same range information and also includes the
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Figure 4.4: Target 6 (Multi-Square) results. The dashed lines represent the RMSE
of an ideal estimation and the solid lines represent the actual estima-
tions. The spline plot was centered around an RMSE value of 4, and
isn’t shown so more attention is applied to the higher performing inter-
polators.

Figure 4.5: Target 8 (Multi-Trap) results. The dashed lines represent the RMSE of
an ideal estimation and the solid lines represent the actual estimations.
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Figure 4.6: Target 9 (Multi-Shape) results. The dashed lines represent the RMSE of
an ideal estimation and the solid lines represent the actual estimations.

Table 4.4: Mean of the difference in RMSE between ideal and actual estimation
performance. Values in table are calculated by taking the difference
between the dashed and solid line for each interpolator in Figures 4.3
through 4.6 and taking the average.

Interpolator Image 4 Image 6 Image 8 Image 9
Hermite 0.023 0.048 0.008 0.026
Linear 0.012 0.034 0.004 0.017
Sinc 0.114 0.118 0.020 0.116
Spline 0.041 0.071 0.008 0.034

pulse width expansion estimations as well. The linear interpolator performs closest

to its ideal performance when compared against the other three interpolators. The

Hermite interpolator performs well in comparison with the other three interpolators,

but includes additional data from the pulse width expansion estimation, introducing

more potential for error. This possibly explains some of the difference between the

performance of the linear interpolator and the Hermite interpolator. Despite this

additional source of possible errors from the pulse width expansions estimation, the

Hermite interpolator appears resilient against poor estimates in comparison to the

other interpolators.
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Table 4.5: Hypothesis test at range to target of 10 kilometers. The columns repre-
sent different FWHM values of the Gaussian pulse in time. The confi-
dence interval was set at 0.10 for T-tests. The percentages reflect how
often the null hypothesis was rejected.

Image Test 1 ns 2 ns 3 ns 4 ns
H1 : µ(control) - µ(Hermite LR) ̸= 0 14.3% 17.5% 30.2% 27.0%
H1 : µ(control) - µ(Hermite SLR) ̸= 0 12.7% 15.9% 20.6% 24.8%

H1 : µ(control) - µ(linear LR) ̸= 0 14.3% 17.5% 30.2% 27.0%
H1 : µ(control) - µ(linear SLR) ̸= 0 15.9% 22.2% 22.2% 25.4%

H1 : µ(control) - µ(spline LR) ̸= 0 12.7% 15.9% 31.8% 27.0%
H1 : µ(control) - µ(spline SLR) ̸= 0 34.9% 33.3% 41.3% 36.5%

H1 : µ(control) - µ(sinc LR) ̸= 0 15.9% 14.3% 23.8% 27.0%
H1 : µ(control) - µ(sinc SLR) ̸= 0 28.6% 31.8% 30.2% 33.3%

4.2 Hypothesis Testing

The hypothesis test was conducted on targets ranged at 10 kilometers. The

results are found in Table 4.5. The percentages listed in the table were calculated

by summing the total number of false positives and dividing by the total number

of tests. A rejection of the null hypothesis implies the interpolated image does not

accurately represent the control image. The results reported suggest that the Hermite

interpolator clearly outperforms the other interpolators when comparing the images

produced using SLR estimates. In fact, the Hermite interpolator performs slightly

better using data from the lowest resolution estimates. At the very least, it suggests

that the interpolator is resilient and the performance of the interpolator doesn’t drop

off significantly as the spatial sampling rate approaches the Nyquist criterion.

The author recognizes the potential error in the comparison. It is possible

that the mean difference between two compared images can be zero without being

the same image. A more applicable example for this application of the hypothesis

test is the ringing effects sometimes produced by the interpolators. It is possible

that there is relatively equal amounts of ringing above and below the control image

profile, averaging out to zero, and therefore not producing a false positive. But, the

T-test results are consistent with the survey and RMSE calculations, therefore, the
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author believes the integrity of the test is legitimate and provides further proof of the

performance of the Hermite interpolator.

4.3 General RMSE Results

The tables and figures in this section display the RMSE results over different

tests. First, the interpolators are compared against each target profile. Then, the

interpolators are compared over the different sampling rates in the time domain.

Lastly, the mean RMSE values are plotted for each interpolator using LR estimates.

The standard deviation (SD) of the RMSE results are plotted as well to see the

deviation spread from the mean.

4.3.1 Target RMSE Analysis. The plots of each interpolator’s performance

for each target are shown in Figures 4.7 and 4.8. Each point in the plot represents

the average of the RMSE for each interpolator’s attempt for each target, calculated

from 1, 960 different tests.

Its clear that the interpolators struggled with Target 6, the multiple squares.

This makes sense due to the high spatial frequency nature of the target. It is also clear

that the spatial sampling was appropriate when comparing the results between the two

estimate rates. The increase between the average RMSE results was approximately

two, which is consistent for the other targets as well. This result justifies the spatial

sampling approximation concluded in Sections 3.1.1.

Due to the overall poor performance of the spline interpolator, its hard to see the

performance difference between the other interpolators, therefore, the average RMSE

data is shown in Table 4.6. The author views target nine as the most realistic target

due to its many different shape profiles. When comparing the results of the realistic

target in Table 4.6, the Hermite interpolator error calculation is the least among

the group of interpolators. In addition, the Hermite interpolator is the number one

performer 61.1% of the time, and among the top two performers 83.3% of the time

when considering data from Table 4.6.
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Figure 4.7: LR interpolator RMSE comparisons across all nine targets.

Figure 4.8: SLR interpolator RMSE comparisons across all nine targets.
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Table 4.6: Shows the averaged RMSE values of each interpolator against each con-
structed target used in the simulations.

Targets 1 2 3 4 5 6 7 8 9
Hermite LR 0.106 0.342 0.060 0.148 0.449 1.336 0.064 0.165 0.645
Hermite SLR 0.237 0.632 0.091 0.362 0.506 2.250 0.083 0.306 1.006

Linear LR 0.104 0.368 0.049 0.185 0.462 1.376 0.047 0.175 0.671
Linear SLR 0.256 0.682 0.095 0.468 0.561 2.235 0.083 0.365 1.035

Sinc LR 0.116 0.344 0.060 0.163 0.493 1.584 0.065 0.192 0.754
Sinc SLR 0.227 0.721 0.124 0.269 0.570 2.286 0.116 0.282 1.174

Spline LR 0.109 0.501 0.046 0.171 0.489 1.983 0.054 0.204 0.922
Spline SLR 0.218 1.289 0.108 0.674 0.548 3.862 0.097 0.620 1.536

4.3.2 Time Sampling Rate RMSE Analysis. For time sample comparison

plots, each interpolator’s average and SD of the RMSE are graphed. Each data point

calculation involves 2, 520 different tests. Only the average RMSE results produced

from the LR estimates are plotted because the RMSE results produced from the SLR

estimates were very similar in comparison and did not show anything of note. Due to

close comparisons between the interpolators, the average RMSE calculations for both

sets of estimates are shown in Table 4.7.

The data plotted against the sampling rate in the time domain, shown in Fig-

ures 4.9 through 4.12, use the Nyquist sampling scale to define the horizontal axis.

The Nyquist sampling scale is defined by

Nscale =
factual
fNyquist

, (4.1)

where factual represents the different sampling rates used and fNyquist is the Nyquist

criterion sample rate in the time domain. The Nyquist criterion sample rate is the

standard deviation of the Gaussian pulse transmitted from the LADAR, covered in

Section 2.3.1. The Nyquist sampling scale allows us to combine the data simulated

using different FWHM values, and therefore different sampling rates, on the same

graph. Values less than one on the Nyquist scale indicates undersampled data. Values

of more than one indicates oversampling.
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Once again, the Hermite interpolator is at the top of any comparisons made

between the other interpolators. However, the Hermite interpolator’s performance

tends to worsen as the sampling rate increases. This is especially of note since this is

not the case with the other interpolators. The negative trend is due to the decrease

in accuracy of the pulse width estimates as the sampling rate in the time domain

increases. Further explanation of the negative Hermite performance trend is explained

in Section 4.5.

Table 4.7: Shows the averaged RMSE values of each interpolator using SLR spa-
tial sampling estimates against the different sampling rates in the time
domain. The SD of the results is listed as well.

Nyquist Scale 0.75 1.25 2.25 3.00 3.75 4.50 5.25
Hermite Mean 0.608 0.608 0.605 0.606 0.609 0.609 0.611
Hermite SD 0.410 0.409 0.416 0.416 0.412 0.413 0.412

Linear Mean 0.647 0.647 0.640 0.641 0.641 0.641 0.640
Linear SD 0.395 0.393 0.400 0.400 0.399 0.399 0.400

Sinc Mean 0.646 0.641 0.642 0.640 0.639 0.638 0.640
Sinc SD 0.440 0.440 0.447 0.447 0.445 0.445 0.447

Spline Mean 1.009 0.999 0.993 0.989 0.993 0.988 0.992
Spline SD 1.242 1.243 1.248 1.262 1.271 1.249 1.268

Figure 4.9: LR Hermite interpolator RMSE average plotted against the sampling
rate in the time domain.
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Figure 4.10: LR linear interpolator RMSE average plotted against the sampling
rate in the time domain.

Figure 4.11: LR spline interpolator RMSE average plotted against the sampling
rate in the time domain.
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Figure 4.12: LR sinc interpolator’s RMSE average plotted against the sampling
rate.

4.4 Adjustment of Bi-Hermite Algorithm

The initial implementation of the bi-Hermite interpolator was a challenge. Be-

cause of the initial lack of positive results, many iterations of tests and evaluations

were attempted to find the source of error. Over the process of these iterations,

positive results were finally realized, showing proof of the concept for the Hermite

interpolator. But, in the process, a change in the Hermite algorithm was unintention-

ally coded. Originally the magnitude of the slope of the target was folded into the

Hermite algorithm using the tangent of the radian value derived from the slope esti-

mation. The unintentional change in code eliminated the tangent of the radians, and

instead included just the radian estimate into the algorithm. This change effectively

reduced the influence of the gradient magnitude in the bi-Hermite equation.

Unfortunately, the evaluation process did not reveal the source of the positive

results until after the simulations were conducted. But, the obvious question arose

about whether the subsitution of the slope angle for the magnitude of the gradient was

ideal. To test this, the Hermite interpolator was evaluated using ideal estimates of the
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data to measure the performance curve of the interpolator. The test was conducted

using each target profile. The tests were run using the following equations for the

variable representing the magnitude of the slope for the surface of the target;

g (x, y) = tan (θ) , (4.2)

g (x, y) = θ, (4.3)

g (x, y) = Dscale tan (θ) , (4.4)

where Equation (4.2) represents the first iteration of the Hermite algorithm, Equa-

tion (4.3) represents the equation that was used to generate all previous results shown

in Chapter IV, and Equation (4.4) is the scaled version of the first iteration. The re-

sults of the tests are shown in Figure 4.13. The choice for scaling values was based

on rough RMSE calculations and the trending performance of the curve. The scaling

factors are implemented by multiplying the tangent of the estimated radians in the

Hermite algorithm.

Based on the mean results shown in Figure 4.13, the performance of the Hermite

interpolator peaked as the scaling factor was reduced to a value of 0.25. The interpo-

lator performance began to deteriorate as the scaling factor continued to be reduced.

Therefore, a small test set was run using the scaling factor for 0.25 to gauge the

performance of the adjusted interpolator compared to the original Hermite algorithm

using only radians for the magnitude of the gradient.

The simulation was run using a target distance of 10 km and a FWHM pulse

width of 4 ns. The comparison of the two Hermite interpolators is shown in Fig-

ure 4.14. On average, the new Hermite algorithm using Equation (4.4) with a 0.25

scaling factor offered an additional 8% improvement in the RMSE average. The im-

provement was consistent between the LR and SLR estimates. A sample comparison

of the interpolator efforts to construct target nine from the SLR estimates is shown

in Figures 4.14 and 4.15. The target constructed using the scaling factor of 0.25 pro-
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duced a more accurate image based on the RMSE results, with a mean improvement

of 8.3% for target nine. The image shown in Figure 4.14 displays more overshoot

for one of the square objects, but possibly maintains the integrity of the majority

of object profiles better than the original Hermite interpolator (see cone and dome

objects).

Figure 4.13: The RMSE of each scaling factor of the Hermite function concern-
ing the magnitude of the gradient. The dotted line represents the
Hermite performance using Equation (4.3). The right most data plot
represents the Hermite performance using Equation (4.2). The data
plots below the red line were calculated using Equation (4.4) in the
Hermite algorithm.
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Figure 4.14: RMSE comparison between the Hermite algorithm that used slope
angle (Equation (4.3)) and the Hermite algorithm that used the scaled
magnitude of the slope of the target (Equation (4.4)). The scaling
factor is 0.25.

Figure 4.15: Interpolation of target nine using SLR estimates and the bi-Hermite
algorithm using radians for magnitude.
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Figure 4.16: Interpolation of target nine using SLR estimates and the bi-Hermite
algorithm using the tangent of radians scaled by 0.25 for magnitude.

4.5 Estimation Error

The estimation error was classified using the mean absolute error (MAE) metric.

The MAE is calculated by [29]

MAE
(
θ̂
)
=

1

MN

M∑
m=1

N∑
n=1

|u (m,n)− u′ (m,n)| (4.5)

where u′ represents the control image and u represents the interpolated image. The

MAE expresses the error of the estimates in the units of the variable of interest

[29]. The error trends are plotted against the targets and the sampling rates in the

time domain. In addition, the estimation error is compared for different pulse width

expansion values (τg). The points in the figures displayed in this section represent the

mean of the MAE calculated over every test ran for that variable.

4.5.1 Target Estimation MAE Analysis. The estimation error for the pulse

width expansion is compared in units of radians. The range error calculations are
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calculated in meters. The LR and SLR estimation error plots are shown in Figures 4.17

and 4.18.

The averaged MAE calculations for the pulse width expansion peaks for every

other target. The peaks occur in targets that contain only a single object. This

is consistent with the concerns shown in developing the estimation algorithms in

Section 3.3. The slope of the target does not significantly affect the pulse width

expansion unless the angle is over 45 degrees. The majority of the pixels in the

targets with only one object are flat, which is the reason the plots in Figure 4.17

peak for targets one, three, five, and seven. The estimation algorithm for pulse width

expansion clearly struggles with relatively flat targets.

Conversely, the inverse relationship plays out for the range estimations. This

follows the intuition that with more objects in the field of view, the more challenging

the range estimates will be. The difference between the target range estimate error is

highlighted by the SLR plot in Figure 4.18. Also, take note of the difference between

the LR and SLR plots. The author does not have a solid theory for the difference

between the LR and SLR estimate error shown in Figure 4.18. The continued in-

vestigation of the cause for the variance will focus on the different amount of pixels

involved with the averaging function of the MAE calculation.

4.5.2 Time Sampling Rate Estimation MAE Analysis. The estimation error

plots shown in Figures 4.19 and 4.20 have opposing trends concerning the MAE

calculations against the Nyquist scaled sampling rates. The angle estimations get

significantly worse as the sampling rate increases. The trend highlights one of the

problem areas for the estimation algorithm. As the sampling rate in time increases,

the estimator performance decreased to an almost unusable amount. An average MAE

calculation of 0.4 radians represents an average estimation error of approximately 23

degrees. Although the performance of the Hermite interpolator suffered, shown by

the negative trend in Table 4.7, it was mitigated by the range estimations. The
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Figure 4.17: Shows average MAE of angle estimations for LR and SLR tests against
each target profile.

Figure 4.18: Shows average MAE of range estimations for LR and SLR tests against
each target profile.

mitigation effects of the range estimations in the bi-Hermite algorithm are described

in more detail in Section 4.6.
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Figure 4.19: Shows error of angle estimation for LR and SLR tests against the
Nyquist sampling scale.

The trend in Figure 4.20 shows that as the sampling rate in time increases, the

range estimates improve. Although, the trend flattens out at around three times the

Nyquist sampling rate. This stabilizing trend is also observed in the plots shown in

Figure 4.19.

4.5.3 FWHM Estimation MAE Analysis. The estimation error plots for the

FWHM values used in the simulations are shown in Figures 4.21 and 4.22. The error

estimates are plotted against the Nyquist sampling scale. The range and angle MAE

trends are noticeable again. In addition, it is apparent that the 1 ns FWHM value

performs the best when looking at the angle MAE values. The plot shows that the

estimator had an easier time discerning the appropriate pulse width expansion when

processing a quicker or narrower pulse. The range MAE plots shown in Figure 4.22

show that the best estimation performance occurs with FWHM value of 3 ns. But,

when the signal is adequately sampled in the time domain, the difference among the

FWHM plots in Figure 4.22 is minimal.
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Figure 4.20: Shows error of range estimation for LR and SLR tests against the
Nyquist sampling scale.

Figure 4.21: Shows error of angle estimation for FWHM (τg) tests against the
Nyquist sampling scale.
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Figure 4.22: Shows error of range estimation for FWHM (τg) tests against the
Nyquist sampling scale.
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4.6 Mitigation of Pulse Width Expansion Error

This section’s intent is to explain the resiliency of the Hermite algorithm con-

cerning the error prone estimates of the pulse width expansion. The algorithm for

the Hermite interpolator is shown again

pi,j (u(x), v(y)) =
1∑

∆i=0

1∑
∆j=0

(fi+∆i,j+∆j)α∆i (u)α∆j (v)

+
1∑

∆i=0

1∑
∆j=0

∆xi

(
∂f

∂x

)
i+∆i,j+∆j

β∆i (u)α∆j (v)

+
1∑

∆i=0

1∑
∆j=0

∆yj

(
∂f

∂y

)
i+∆i,j+∆j

α∆i (u) β∆j (v) . (4.6)

The resiliency of the interpolator concerning poor magnitude gradient estimates comes

from the variables ∆xi and ∆yj. The variables concern the x and y direction range

estimations. The range estimates introduced less error in the Hermite interpolator

algorithm, therefore, in addition to providing direction for the magnitude, it also

proved to be a stabilization factor. The egregious angle estimates mostly occurred in

the flat portions of the target. Alternatively, the range estimates of the flat sections

of the target proved to be the most accurate. Therefore, the majority of the erroneous

angle estimates in the flat section were cancelled out by the derivative of the range

estimates, typically zero or near zero in the flat sections of the target.
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V. Conclusions and Future Work

This section details conclusions that were drawn from the results of this research.

These conclusions include the overall performance of the proposed Hermite interpo-

lator as well as the ideal operating conditions for the interpolators. Future research

areas are also presented here.

5.1 Conclusions

5.1.1 Hermite Interpolator Performance. The author used T-tests, RMSE

comparisons, and surveys to evaluate the performance of the interpolators. By all

measures utilized in this study, the Hermite interpolator outperformed the other three

interpolators in the majority of the tests. Certain interpolators outperformed the

Hermite interpolator in specific cases, but this proved to be the exception and not

the rule. The Hermite interpolator developed utilizing the range and pulse width

expansion information in the signal provided the most accurate images when compared

to the other three mentioned interpolators.

In this limited case, it has been proven that it is possible to measure the pulse

width expansion of a laser pulse return and use the information to interpolate a more

accurate image. In addition to best measured performance across all of the testing

conditions, the Hermite interpolator’s performance concerning target nine (multiple

shapes) was the best in comparison. The results from target nine are viewed as more

important because the target is seen as more realistic and closer to experimental

conditions. This result is important because no one has proven that it’s possible and

beneficial to measure and utilize the available information in the reflected LADAR

pulse to increase the resolution of an image of a target.

5.1.2 Ideal LADAR Operating Conditions. In addition to the performance

of the Hermite interpolator, the parameters of the LADAR were tested to determine

the best operating conditions. Considering the results for the pulse width and range

MAE, the ideal sampling rate in the time domain occurs at or just above the Nyquist
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sampling rate. This result is ideal when considering the high speeds of the laser

presented in this thesis. The increase in performance based on oversampling in the

time domain is not justified. The MAE results also showed that the ideal FWHM

value for the laser pulse is 1 ns. But, based on the graduated performance of the

other three FWHM values, the ideal FWHM value for a LADAR is the fastest pulse

width that can be measured.

5.2 Future Work

The result found in this study represents the beginning of an endeavor to realize

a LADAR system that uses the pulse width expansion of a LADAR pulse to enhance

the image of a target. The following sections explain the areas of study that can be

explored for research based on the results of this study.

5.2.1 Experimental Results. First, the results found from the simulations

in this study should be experimentally tested with LADAR equipment. This would

accomplish two goals. First, the experimental tests would confirm the ability of an

estimation algorithm to estimate the gradient of the surface of an experimental target.

Secondly, the performance of the interpolators using estimates from experimental

results could be compared to the theoretical results, possibly confirming the results

of this thesis.

5.2.2 LADAR Model Complexity. The LADAR model utilized for this test

was relatively simple compared to other potential models. Although this model served

a purpose to highlight the intuition behind the performance of the Hermite interpo-

lator, a more robust model is desired for thoroughness. The LADAR model assumes

that the equipment and the targets remain motionless and are aligned normal to each

other. The LADAR model needs to include the complete BRDF model covered in

Section 2.1.3, which includes speckle reflection as well as varied angles of propagation

relative to the target plane. Also, a more robust atmospheric and optical model is de-
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sired to thoroughly challenge the estimation effort and test the limits of performance

of the Hermite interpolator relative to these conditions.

5.2.3 Different LADAR Applications. The application for the LADAR

model is intended for small targets at relatively close distances, where the pixel

FOVs are relatively small. Another LADAR application that should be considered a

candidate for Hermite interpolation is larger systems that image terrain from large

distances. This would require at minimum an additional model for the laser field

distribution of each pixel because of the relatively large pixel sizes.

5.2.4 Different Image Processing Applications. The Hermite algorithm was

only applied to one type of image processing technique, interpolation. There are other

image processing techniques that could utilize the pulse width expansion information

to generate a better quality image. One potential avenue is the use of both the range

and pulse width estimates for comparison against each other to denoise and clean up

an image. This method could seek to isolate pixel value outliers based on comparisons

of the two estimates.

5.2.5 Test Over Ranges. The author intended to test the interpolators’ per-

formance over different target ranges. Although the ranges to the target were changed,

the implementation of the tests normalized the differences between the ranges by ad-

justing the pixel size based on the range. Therefore, data could not be analyzed to

compare the difference of the interpolator performances across the different target

ranges. The results could have been compared to prior research [9], which suggests

that the pulse width expansion decreases as the range to target decreases. This could

have lead to a decrease in the performance of the Hermite interpolator.

5.2.6 Thoroughly Test Hermite Interpolator. The discovery of the reason

for the Hermite interpolators’ success occured late in the process of this study. More

testing is needed to study the optimal implementation of the Hermite interpolator.
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Appendix A. Human Subject Paperwork

The human subject paperwork required for the survey is attached on the following

pages.
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DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY (AETC) 

MEMORANDUM FOR 711 HPW/IR (AFRL IRB) 

FROM: AFIT/ENG (Dr. Martin) 
2950 Hobson Way WPAFB, OH 45433-7765 

18 October 2011 

SUBJECT: Request for exemption from human experimentation requirements (32 CFR 219, 
DoDD 3216.2 and AFI 40-402) for a study on the performance of applied interpolators to create 
an image of an object 

1. The purpose of this study is to determine the performance of various signal processing 
interpolators on Laser Detection and Ranging (LADAR) returns. The resulting research will be 
included in the thesis study of one of my students. 

2. This request is based on the Code of Federal Regulations, title 32, part 219, section 101, 
paragraph (b) (2) Research activities that involve the use of educational tests (cognitive, 
diagnostic, aptitude, achievement), survey procedures, interview procedures, or observation of 
public behavior unless: (i) Information obtained is recorded in such a manner that human 
subjects can be identified, directly or through identifiers linked to the subjects; and (ii) Any 
disclosure of the human subjects' responses outside the research could reasonably place the 
subjects at risk of criminal or civil liability or be damaging to the subjects' financial standing, 
employability, or reputation. 

3. The following information is provided to show cause for such an exemption: 

a) Equipment and facilities: No special equipment or facilities will be needed. A survey 
that is attached will be finished in the near future will be given to the subjects. 

b) Subjects: The anticipated study population is students who work in the same student 
section and lab as the experimenter. The students that will be surveyed are mostly in the 
military with engineering and science backgrounds. Some civilian students with engineering 
and science backgrounds could be included in the study as well. The potential population of 
the study group is all male except for one, with age ranging from 22 to 40. This study makes 
no distinction between gender, age, rank, or any other attributes which might identify one 
student from another. The expected sample size is around 20 for the survey; the maximum 
size would be 60, if all students participated. There is no one factor that could potentially bar 
someone from participation in the study. Enrollment in the study would begin upon the 
approval from the IRB board. 



 

 

 

 

 

c) Timeframe: The study is expected to last approximately two weeks, the actual survey 
should take no longer than five minutes. 

 
d) Data collected:  No identifying information will be obtained from the participants.  The 
participants will be given an approximately five minute survey, which is attached.  This 
subject will not collect personal identifiers or specific demographic information. 

 
e) Risks to Subjects: There is little to no risk to participants.  The only risk that may exist 
would be revealing of personal identifying marks on the survey, however every possible 
effort will be made to separate the surveys from the consent form which the participants will 
sign. If a subject’s future response reasonably places them at risk of criminal or civil liability 
or is damaging to their financial standing, employability, or reputation, I understand that I am 
required to immediately file an adverse event report with the IRB office.   

 
f) Informed consent:  All subjects are self-selected to volunteer to participate in the 
interview.  No adverse action is taken against those who choose not to participate.  Subjects 
are made aware of the nature and purpose of the research, sponsors of the research, and 
disposition of the survey results.   A copy of the Privacy Act Statement of 1974 is presented 
for their review.   
 

4. If you have any questions about this request, please contact Richard Martin (primary 
investigator) – phone 937-255-3636 ext. 4625; E-mail – richard.martin@afit.edu . 
 
 
 
 
        Richard K. Martin 
        Associate Professor of Electrical Eng. 
        Principal Investigator 
 
 
Attachments: 
 
1. Survey questions 
2. Consent Form 
  



 

 

 

 

 

Proposed Survey Questions 
 

Implementation of the Survey: 
For the execution of the survey, I will have a printed out control image, which represents the 
object that was illuminated with a light pulse.  Then for comparison, I will have a page of four 
images that were generated using four different interpolators.  Each image will be labeled with a 
letter.  There will be multiple pages of the same four images regarding the different changes that 
were made for that simulation that produced the four images.   The position for each image on 
every page will be randomized.    There will be multiple control images.   Each control object 
that is implemented will be compared in exactly the same way as the first control object.  
 
Survey Question: 
   
Please rank in order from 1 to 4, with 1 being the most accurate and 4 being the least accurate, 
the following images on page X against control image Y. 
 
Image A:_____ Image B:______ Image C:______ Image D:______ 
 
There will be more following questions in the future once the images are generated.  They will 
be a repeat of the first question, with changes to “page X” or “control image Y.” 
 
 
  



 

 

 

 

 

STUDENT CONSENT FOR PARTICIPATION IN RESEARCH 
A study to examine the performance of image interpolators when implemented on LADAR 
returns from certain objects. 
 
 

PURPOSE AND BACKGROUND 
Jeramy Walter Motes, a graduate student in the ENG department at the Air Force Institute of Technology, 
is conducting a research study to examine the performance of image interpolators when applied to Laser 
Range and Detection (LADAR) returns generated by illuminating certain objects.  I am being asked to 
participate in this study because I am a student at AFIT. 

 

PROCEDURES 
If I agree to be in the study, the following will happen: 

 

I will complete one survey which will take approximately five minutes.  Only those participants with 
a signed consent form may participate.   

 

RISKS/DISCOMFORTS 
There are no foreseen risks in participating in this study. 
 

CONFIDENTIALITY  
Participation in research may involve a loss of privacy, but information about me will be handled as 
confidentially as possible. The researcher, Jeramy Walter Motes, will have access to information about 
me.  . Other participants involved in this study will not receive information about me. Other faculty or 
senior members of AFIT will not receiver information about me.  My name will not be used in any 
published reports about this study.  

 

BENEFITS 
There will be no direct benefit to me from participating in this study.   

 

QUESTIONS 
If I have questions about this research study, or have a research-related injury to report, I can contact the 
researcher Jeramy Walter Motes at 850-582-4727.  If I would like a copy of the group (not individual) 
results of this study, I can contact Jeramy Walter Motes.  It is estimated that these results will be available 
on or after 20 Nov 2011.  

 

CONSENT 
I will be given a copy of this consent form to keep. 
 

PARTICIPATION IN RESEARCH IS VOLUNTARY.  I am free to decline to be in this study, or to 
withdraw from it at any point.  My decision as to whether or not to participate in this study will have no 
influence on my present or future status as a student athlete in this program. 

 

If I agree to participate I should sign below. 
 

 
    
Date  Signature of Study Participant 
 
 

    
Date  Signature of Person Obtaining Consent 

 



DEPARTMENT OF THE AIR FORCE 
AIR FORCE INSTITUTE OF TECHNOLOGY 

WRIGHT-PATTERSON AIR FORCE BASE OHIO 

MEMORANDUM FOR DR. RICHARD K. MARTIN 

FROM: Jeffrey A. Ogden, Ph.D. 
AFIT IRB Research Reviewer 
2950 Hobson Way 
Wright-Patterson AFB, OH 45433-7765 

21 Oct 2011 

SUBJECT: Approval for exemption request from human experimentation requirements (32 CFR 
219, DoDD 3216.2 and AFI 40-402) for a study on the performance of applied interpolators to 
create an image of an object. 

1. Your request was based on the Code of Federal Regulations, title 32, part 219, section 101, 
paragraph (b) (2) Research activities that involve the use of educational tests (cognitive, 
diagnostic, aptitude, achievement), survey procedures, interview procedures, or observation of 
public behavior unless: (i) Information obtained is recorded in such a manner that human 
subjects can be identified, directly or through identifiers linked to the subjects; and (ii) Any 
disclosure of the human subjects' responses outside the research could reasonably place the 
subjects at risk of criminal or civil liability or be damaging to the subjects' financial standing, 
employability, or reputation. 

2. Your study qualifies for this exemption because you are not collecting sensitive data, which 
could reasonably damage the subjects' financial standing, employability, or reputation. Further, 
the demographic data you are collecting, if any, and the way that you plan to report it cannot 
realistically be expected to map a given response to a specific subject. 

3. This determination pertains only to the Federal, Department of Defense, and Air Force 
regulations that govern the use of human subjects in research. Further, if a subject's future 
response reasonably places them at risk of criminal or civil liability or is damaging to their 
financial standing, employability, or reputation, you are required to file an adverse event report 
with this office immediately. 

JEFFREY A. OGDEN, PH.D. 
AFIT Research Reviewer 
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Laser Detection and Ranging (LADAR) systems produce both a range image and an intensity image by measuring
the intensity of light reflected off a surface target. When the transmitted LADAR pulse strikes a sloped surface, the
returned pulse is expanded temporally. This characteristic of the reflected laser pulse enables the possibility of estimating
the gradient of a surface. This study estimates the gradient of the surface of an object from a modeled LADAR return
pulse that includes accurate probabilistic noise models. The range and surface gradient estimations are incorporated into
a novel interpolator that facilitates an effective three dimensional (3D) reconstruction of an image given a range of
operating conditions. The performance of the novel interpolator is measured by comparing the reconstruction effort
against the performance of three common interpolation techniques: linear, spline, and sinc.
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